Source code for tvb.adapters.datatypes.db.local_connectivity

# -*- coding: utf-8 -*-
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as explained here:
import scipy.sparse
from sqlalchemy import Column, Integer, ForeignKey, Float, String
from sqlalchemy.orm import relationship
from tvb.datatypes.local_connectivity import LocalConnectivity
from tvb.adapters.datatypes.db.surface import SurfaceIndex
from tvb.core.entities.model.model_datatype import DataType
from tvb.core.neotraits.db import from_ndarray

[docs]class LocalConnectivityIndex(DataType): id = Column(Integer, ForeignKey(, primary_key=True) fk_surface_gid = Column(String(32), ForeignKey(SurfaceIndex.gid), nullable=not LocalConnectivity.surface.required) surface = relationship(SurfaceIndex, foreign_keys=fk_surface_gid, primaryjoin=SurfaceIndex.gid == fk_surface_gid) matrix_non_zero_min = Column(Float) matrix_non_zero_max = Column(Float) matrix_non_zero_mean = Column(Float)
[docs] def fill_from_has_traits(self, datatype): # type: (LocalConnectivity) -> None super(LocalConnectivityIndex, self).fill_from_has_traits(datatype) I, J, V = scipy.sparse.find(datatype.matrix) self.matrix_non_zero_min, self.matrix_non_zero_max, self.matrix_non_zero_mean = from_ndarray(V) self.fk_surface_gid = datatype.surface.gid.hex