Source code for tvb.rateML.XML2model

# -*- coding: utf-8 -*-
#  TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also
# (c) 2012-2024, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as explained here:

LEMS2python module implements a DSL code generation using a TVB-specific LEMS-based DSL.

.. moduleauthor:: Michiel. A. van der Vlag <>   
.. moduleauthor:: Marmaduke Woodman <>

        Usage: - create an modelfile.xml
               - import rateML
               - make instance: rateml(model_filename, language, your/XMLfolder, 'your/generatedModelsfolder')
        the current supported model framework languages are python and cuda.
        for new models models/__init.py__ is auto_updated if model is unfamiliar to tvb for py models
        model_class_name is the model_filename + 'T', so not to overwrite existing models. Be sure to add the t
        when simulating the model in TVB
        example model files:


import os
import re
import argparse
import numpy as np
import tvb.simulator.models
from mako.template import Template
from tvb.basic.logger.builder import get_logger
from lems.model.model import Model

logger = get_logger(__name__)

[docs] class RateML: def __init__(self, model_filename=None, language=None, XMLfolder=None, GENfolder=None): self.args = self.parse_args() self.model_filename = model_filename or self.args.model language = language or self.args.language.lower() try: assert language in ('cuda', 'python', 'Cuda', 'Python', 'CUDA') self.language = language.lower() except AssertionError as e: logger.error('Please choose between Python or Cuda %s', e) exit() self.XMLfolder = XMLfolder or self.args.source self.GENfolder = GENfolder or self.args.destination # set file locations self.generated_model_location = self.set_generated_model_location() self.xml_location = self.set_XML_model_folder() # start templating model_str, driver_str = self.render() # write model to user submitted location self.write_model_file(self.generated_model_location, model_str) if self.language == 'cuda': # write driver file to fixed ./run/ location self.write_model_file(self.set_driver_location(), driver_str) # for driver robustness also write XML to default location generatedModels folder for CUDA if GENfolder != None: default_save = os.path.join(self.default_generation_folder(), self.model_filename.lower() + '.c') self.write_model_file(default_save, model_str) # if it is a model, it should be familiarized if self.language.lower() == 'python': self.familiarize_TVB(model_str)
[docs] def parse_args(self): # {{{ parser = argparse.ArgumentParser(description='Run XML model conversion.') parser.add_argument('-m', '--model', default='rwongwang', help="neural mass model to be converted") parser.add_argument('-l', '--language', default='Python', help="programming language output") parser.add_argument('-s', '--source', default='', help="source folder location") parser.add_argument('-d', '--destination', default='', help="destination folder location") args, unknown = parser.parse_known_args() return args
[docs] @staticmethod def default_XML_folder(): here = os.path.dirname(os.path.abspath(__file__)) xmlpath = os.path.join(here, 'XMLmodels') return xmlpath
[docs] def set_XML_model_folder(self): folder = self.XMLfolder or self.default_XML_folder() try: location = os.path.join(folder, self.model_filename.lower() + '.xml') assert os.path.isfile(location) except AssertionError: logger.error('XML folder %s does not contain %s', folder, self.model_filename + '.xml') exit() return location
[docs] @staticmethod def default_generation_folder(): here = os.path.dirname(os.path.abspath(__file__)) modelpath = os.path.join(here, 'generatedModels') return modelpath
[docs] def set_generated_model_location(self): folder = self.GENfolder or self.default_generation_folder() lan = self.language.lower() if lan == 'python': ext = '.py' elif lan == 'cuda': ext = '.c' try: location = os.path.join(folder) assert os.path.isdir(location) except AssertionError: logger.error('Generation folder %s does not exist', location) exit() return os.path.join(folder, self.model_filename.lower() + ext)
[docs] def set_driver_location(self): here = os.path.dirname(os.path.abspath(__file__)) return os.path.join(here, 'run', 'model_driver_' + self.model_filename + '.py')
[docs] def set_template(self, name): here = os.path.dirname(os.path.abspath(__file__)) tmp_filename = os.path.join(here, 'tmpl8_' + name + '.py') template = Template(filename=tmp_filename) return template
[docs] def XSD_validate_XML(self): """Use own validation instead of LEMS because of slight difference in definition file""" from lxml import etree xsd_fname = os.path.join(os.path.abspath(os.path.dirname(__file__)), "rML_v0.xsd") xmlschema = etree.XMLSchema(etree.parse(xsd_fname)) xmlschema.assertValid(etree.parse(self.xml_location))"True validation of {0} against {1}".format(self.xml_location, xsd_fname))
[docs] def pp_bound(self, model): # check if boundaries for state variables are present. contruct is not necessary in pymodels # python only svboundaries = False for i, sv in enumerate(model.component_types['derivatives'].dynamics.state_variables): if sv.exposure != 'None' and sv.exposure != '' and sv.exposure: svboundaries = True continue return svboundaries
[docs] def pp_cplist(self, model): # check for component_types containing coupling in name and gather data. # multiple coupling functions could be defined in xml # cuda only couplinglist = list() for i, cplists in enumerate(model.component_types): if 'coupling' in couplinglist.append(cplists) return couplinglist
[docs] def pp_noise(self, model): # only check whether noise is there, if so then activate it # cuda only noisepresent = False for ct in (model.component_types): if == 'noise': noisepresent = True # see if nsig derived parameter is present for noise # cuda only modellist = model.component_types['derivatives'] nsigpresent = False if noisepresent == True: for dprm in (modellist.derived_parameters): if ( == 'nsig' or == 'NSIG'): nsigpresent = True return noisepresent, nsigpresent
# check for power symbol and parse to python (**) or c power (powf(x, y))
[docs] def swap_language_specific_terms(self, model_str): if self.language == 'cuda': model_str = re.sub(r"\bpi\b", 'PI', model_str) model_str = re.sub(r"\binf\b", 'INF', model_str) for power in re.finditer(r"\{(.*?)(\^)(.*?)\}", model_str): target = powersplit = target.split('^') if self.language == 'cuda': pow = 'powf(' + powersplit[0].replace('{', '') + ', ' + powersplit[1].replace('}', '') + ')' if self.language == 'python': pow = powersplit[0].replace('{', '') + '**' + powersplit[1].replace('}', '') model_str = re.sub(re.escape(target), pow, model_str) return model_str
# setting the inital value for cuda models # the entered range is splitted and a random value is generated within range # if values are equal then that is the inital value
[docs] def init_statevariables(self, model): modellist = model.component_types['derivatives'].dynamics.state_variables for sv in modellist: splitdim = list(sv.dimension.split(",")) sv_rnd = np.random.uniform(low=float(splitdim[0]), high=float(splitdim[1])) model.component_types['derivatives'].dynamics.state_variables[].dimension = sv_rnd
[docs] def load_model(self): """Load model from filename""" # instantiate LEMS lib model = Model() model.import_from_file(self.xml_location) self.XSD_validate_XML() # Do some preprocessing on the template to easify rendering noisepresent, nsigpresent = self.pp_noise(model) couplinglist = self.pp_cplist(model) svboundaries = self.pp_bound(model) if self.language == 'cuda': self.init_statevariables(model) return model, svboundaries, couplinglist, noisepresent, nsigpresent
[docs] def render(self): """ render_model start the mako templating. this function is similar for all languages. its .render arguments are overloaded. """ model, svboundaries, couplinglist, noisepresent, nsigpresent = self.load_model() derivative_list = model.component_types['derivatives'] model_str = self.render_model(derivative_list, svboundaries, couplinglist, noisepresent, nsigpresent) model_str = self.swap_language_specific_terms(model_str) # render driver only in case of cuda if self.language == 'cuda': driver_str = self.render_driver(derivative_list) else: driver_str = None return model_str, driver_str
[docs] def render_model(self, derivative_list, svboundaries, couplinglist, noisepresent, nsigpresent): if self.language == 'python': model_class_name = self.model_filename.capitalize() + 'T' if self.language == 'cuda': model_class_name = self.model_filename # start templating model_str = self.set_template(self.language).render( modelname=model_class_name, # all const=derivative_list.constants, # all dynamics=derivative_list.dynamics, # all exposures=derivative_list.exposures, # all params=derivative_list.parameters, # cuda derparams=derivative_list.derived_parameters, # cuda svboundaries=svboundaries, # python coupling=couplinglist, # cuda noisepresent=noisepresent, # cuda nsigpresent=nsigpresent, # cuda ) return model_str
[docs] def render_driver(self, derivative_list): driver_str = self.set_template('driver').render( model=self.model_filename, XML=derivative_list, ) return driver_str
[docs] def familiarize_TVB(self, model_str): ''' Write new model to TVB model location and into such it is familiar to TVB if not already present This is for Python models only ''' model_filename = self.model_filename # set tvb location TVB_model_location = os.path.join(os.path.dirname(tvb.simulator.models.__file__), model_filename.lower() + '') # next to user submitted location also write to default tvb location self.write_model_file(TVB_model_location, model_str) try: doprint = True modelenumnum = 0 modulemodnum = 0 with open(os.path.join(os.path.dirname(tvb.simulator.models.__file__), ''), "r+") as f: lines = f.readlines() for num, line in enumerate(lines): if (model_filename.upper() + 'T = ' + "\"" + model_filename.capitalize() + "T\"") in line: doprint = False elif ("class ModelsEnum(Enum):") in line: modelenumnum = num elif ("_module_models = {") in line: modulemodnum = num if doprint: lines.insert(modelenumnum + 1, " " + model_filename.upper() + 'T = ' + "\"" + model_filename.capitalize() + "T\"\n") lines.insert(modulemodnum + 2, " " + "'" + model_filename.lower() + "T'" + ': ' + "[ModelsEnum." + model_filename.upper() + "T],\n") f.truncate(0) f.writelines(lines)"model file generated {}".format(model_filename)) except IOError as e: logger.error('Writing TVB model to file failed: %s', e)
[docs] def write_model_file(self, model_location, model_str): '''Write templated model to file''' try: with open(model_location, "w") as f: f.writelines(model_str) except IOError as e: logger.error('Writing %s model to file failed: %s', self.language, e)
if __name__ == "__main__": RateML() # example for direct project implementation # set the language for your model # language='python' # language='Cuda' # choose an example or your own model # model_filename = 'montbrio' # model_filename = 'oscillator' # model_filename = 'kuramoto' # model_filename = 'rwongwang' # model_filename = 'epileptor' # start conversion to default model location # RateML(model_filename, language)