Source code for tvb.core.adapters.inputs_processor

# -*- coding: utf-8 -*-
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as explained here:

.. moduleauthor:: Adrian Dordea <>

import os
import numpy
from tvb.core.entities.load import load_entity_by_gid
from tvb.core.neotraits.forms import TraitDataTypeSelectField, TraitUploadField, UserSessionStrField

def _review_operation_inputs_for_adapter_model(form_fields, form_model, view_model):
    changed_attr = {}
    inputs_datatypes = []

    for field in form_fields:

        if not hasattr(view_model,
        attr_vm = getattr(view_model,
        if attr_vm and type(field) == TraitUploadField:
            attr_vm = os.path.basename(attr_vm)
        if attr_vm and type(field) == UserSessionStrField:
            # Don't show UserSession actual value, as these might contain a secret, instead show the env Variable
            changed_attr[field.label] = "SECRET ${%s}" %

        if isinstance(field, TraitDataTypeSelectField):
            data_type = None
            if attr_vm:
                data_type = load_entity_by_gid(attr_vm)
                changed_attr[field.label] = data_type.display_name if data_type else "None"
            attr_default = None
            if hasattr(form_model,
                attr_default = getattr(form_model,

            if isinstance(attr_vm, numpy.ndarray):
                check_for_changed = attr_vm.size != 0
                check_for_changed = attr_vm != attr_default

            if check_for_changed:
                if isinstance(attr_vm, float) or isinstance(attr_vm, int) or isinstance(attr_vm, str):
                    changed_attr[field.label] = attr_vm
                elif isinstance(attr_vm, tuple) or isinstance(attr_vm, list):
                    changed_attr[field.label] = ', '.join([str(sub_attr) for sub_attr in attr_vm])
                    # All HasTraits instances will show as being different than default, even if the same!! Is this ok?
                    changed_attr[field.label] = str(attr_vm)

    return inputs_datatypes, changed_attr

[docs]def review_operation_inputs_from_adapter(adapter, operation): """ :returns: a list with the inputs from the parameters list that are instances of DataType,\ and a dictionary with all parameters which are different than the declared defauts """ view_model = adapter.load_view_model(operation) form_model = adapter.get_view_model_class()() form_fields = adapter.get_form_class()().fields inputs_datatypes, changed_attr = _review_operation_inputs_for_adapter_model(form_fields, form_model, view_model) fragments_dict = adapter.get_adapter_fragments(view_model) # The Simulator, for example will have Fragments for path, fragments in fragments_dict.items(): if path is None: fragment_defaults = form_model fragment_model = view_model else: fragment_defaults = getattr(form_model, path) fragment_model = getattr(view_model, path) for fragment in fragments: fragment_fields = fragment().fields part_dts, part_changed = _review_operation_inputs_for_adapter_model(fragment_fields, fragment_defaults, fragment_model) inputs_datatypes.extend(part_dts) changed_attr.update(part_changed) return inputs_datatypes, changed_attr