Source code for tvb.adapters.datatypes.h5.sensors_h5
# -*- coding: utf-8 -*-
#
#
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also http://www.thevirtualbrain.org
#
# (c) 2012-2024, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE. See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program. If not, see <http://www.gnu.org/licenses/>.
#
#
# CITATION:
# When using The Virtual Brain for scientific publications, please cite it as explained here:
# https://www.thevirtualbrain.org/tvb/zwei/neuroscience-publications
#
#
from tvb.basic.neotraits.api import NArray
from tvb.core.neotraits.h5 import H5File, DataSet, Scalar, STORE_STRING, MEMORY_STRING
from tvb.datatypes.sensors import Sensors
[docs]
class SensorsH5(H5File):
def __init__(self, path):
super(SensorsH5, self).__init__(path)
self.sensors_type = Scalar(Sensors.sensors_type, self)
self.labels = DataSet(NArray(dtype=STORE_STRING), self, "labels")
self.locations = DataSet(Sensors.locations, self)
self.has_orientation = Scalar(Sensors.has_orientation, self)
self.orientations = DataSet(Sensors.orientations, self)
self.number_of_sensors = Scalar(Sensors.number_of_sensors, self)
self.usable = DataSet(Sensors.usable, self)
[docs]
def get_locations(self):
return self.locations.load()
[docs]
def get_labels(self):
return self.labels.load()
[docs]
def store(self, datatype, scalars_only=False, store_references=True):
# type: (Sensors, bool, bool) -> None
super(SensorsH5, self).store(datatype, scalars_only, store_references)
self.labels.store(datatype.labels.astype(STORE_STRING))
[docs]
def load_into(self, datatype):
# type: (Sensors) -> None
super(SensorsH5, self).load_into(datatype)
datatype.labels = self.labels.load().astype(MEMORY_STRING)
[docs]
def read_subtype_attr(self):
return self.sensors_type.load()