Source code for tvb.adapters.datatypes.h5.sensors_h5

# -*- coding: utf-8 -*-
# TheVirtualBrain-Framework Package. This package holds all Data Management, and
# Web-UI helpful to run brain-simulations. To use it, you also need to download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also
# (c) 2012-2023, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as explained here:
from tvb.basic.neotraits.api import NArray
from tvb.core.neotraits.h5 import H5File, DataSet, Scalar, STORE_STRING, MEMORY_STRING
from tvb.datatypes.sensors import Sensors

[docs] class SensorsH5(H5File): def __init__(self, path): super(SensorsH5, self).__init__(path) self.sensors_type = Scalar(Sensors.sensors_type, self) self.labels = DataSet(NArray(dtype=STORE_STRING), self, "labels") self.locations = DataSet(Sensors.locations, self) self.has_orientation = Scalar(Sensors.has_orientation, self) self.orientations = DataSet(Sensors.orientations, self) self.number_of_sensors = Scalar(Sensors.number_of_sensors, self) self.usable = DataSet(Sensors.usable, self)
[docs] def get_locations(self): return self.locations.load()
[docs] def get_labels(self): return self.labels.load()
[docs] def store(self, datatype, scalars_only=False, store_references=True): # type: (Sensors, bool, bool) -> None super(SensorsH5, self).store(datatype, scalars_only, store_references)
[docs] def load_into(self, datatype): # type: (Sensors) -> None super(SensorsH5, self).load_into(datatype) datatype.labels = self.labels.load().astype(MEMORY_STRING)
[docs] def read_subtype_attr(self): return self.sensors_type.load()