The Virtual Brain Project

Source code for tvb.adapters.visualizers.pca

# -*- coding: utf-8 -*-
# TheVirtualBrain-Framework Package. This package holds all Data Management, and 
# Web-UI helpful to run brain-simulations. To use it, you also need do download
# TheVirtualBrain-Scientific Package (for simulators). See content of the
# documentation-folder for more details. See also
# (c) 2012-2017, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as follows:
#   Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
#   Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
#       The Virtual Brain: a simulator of primate brain network dynamics.
#   Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)

A displayer for the principal components analysis.

.. moduleauthor:: Marmaduke Woodman <>

import json
from tvb.datatypes.mode_decompositions import PrincipalComponents
from tvb.core.adapters.abcdisplayer import ABCDisplayer

[docs]class PCA(ABCDisplayer): _ui_name = "Principal Components Analysis Visualizer"
[docs] def get_input_tree(self): """Inform caller of the data we need""" return [{"name": "pca", "type": PrincipalComponents, "label": "Principal component analysis:", "required": True }]
[docs] def get_required_memory_size(self, **kwargs): """Return required memory. Here, it's unknown/insignificant.""" return -1
[docs] def launch(self, pca): """Construct data for visualization and launch it.""" ts_entity = self.load_entity_by_gid(pca.source.gid) labels_data = ts_entity.get_space_labels() fractions_update_url = self.paths2url(pca, 'read_fractions_data') weights_update_url = self.paths2url(pca, 'read_weights_data') return self.build_display_result("pca/view", dict(labels_data=json.dumps(labels_data), fractions_update_url=fractions_update_url, weights_update_url=weights_update_url))
[docs] def generate_preview(self, pca, figure_size=None): return self.launch(pca)