TheVirtualBrain:

TheDocumentationwebsite.

Source code for tvb.contrib.tests.cosimulation.parallel.update_function_test

# -*- coding: utf-8 -*-
#
#
#  TheVirtualBrain-Contributors Package. This package holds simulator extensions.
#  See also http://www.thevirtualbrain.org
#
# (c) 2012-2022, Baycrest Centre for Geriatric Care ("Baycrest") and others
#
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <http://www.gnu.org/licenses/>.
#
#
#   CITATION:
# When using The Virtual Brain for scientific publications, please cite it as follows:
#
#   Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
#   Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
#       The Virtual Brain: a simulator of primate brain network dynamics.
#   Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)

"""
.. moduleauthor:: Lionel Kusch <lkusch@thevirtualbrain.org>
.. moduleauthor:: Dionysios Perdikis <dionperd@gmail.com>
"""

import numpy as np
import pytest

from tvb.tests.library.base_testcase import BaseTestCase
from tvb.contrib.tests.cosimulation.parallel.function_tvb import TvbSim


[docs]class TestUpdateModel(BaseTestCase): """ test the function of function_tvb """
[docs] def test_update_model(self): weight = np.array([[1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1], [1, 1, 1, 1]]) delay = np.array([[1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5], [1.5, 1.5, 1.5, 1.5]]) resolution_simulation = 0.1 synchronization_time = 1.0 proxy_id = [0, 1] firing_rate = np.array([[20.0, 10.0]]) * 10 ** -3 # units time in tvb is ms so the rate is in KHz # Test the the update function sim = TvbSim(weight, delay, proxy_id, resolution_simulation, synchronization_time) time, result = sim(resolution_simulation,[np.array([resolution_simulation]), firing_rate]) for i in range(0, 100): time, result = sim(synchronization_time, [np.arange(i * synchronization_time, (i + 1) * synchronization_time, resolution_simulation), np.repeat(firing_rate.reshape(1, 2), int(synchronization_time / resolution_simulation), axis=0)]) assert True # Test a fail function due to the time of simulation too long with pytest.raises(ValueError): sim(synchronization_time,[np.arange(100 * synchronization_time, 102 * synchronization_time, resolution_simulation), np.repeat(firing_rate.reshape(1, 2), int(synchronization_time / resolution_simulation)*2, axis=0)] ) # Test a fail function due to the resoulation time is not good with pytest.raises(ValueError): sim(synchronization_time,[np.arange(100 * synchronization_time, 101 * synchronization_time, resolution_simulation*2), np.repeat(firing_rate.reshape(1, 2), int(synchronization_time / resolution_simulation)*2, axis=0)] )