{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "%matplotlib widget\n", "from tvb.simulator.lab import *\n", "import matplotlib.pyplot as plt" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exploring The Bold Monitor\n", "===============================================================" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This tutorial explores the different functions used to model the haemodynamic response function (HRF) to compute the BOLD (Blood Oxygenation Level Dependent) signal. \n", "\n", "In the current implementation (1.1.3) TVB has HRF kernels:\n", "\n", "1. a Gamma function,\n", "2. a difference of two damped oscillators, \n", "3. a first order Volterra kernel, and\n", "4. a mixture of gamma functions. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "*Bold Monitor*\n", "--------\n", "\n", "\n", "\n", "Let's start by creating an instance of the Bold monitor with its default parameters:" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "

Bold

\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "\n", "
value
Type
Bold
gid
UUID('6756984b-c97d-40a3-9475-6a1c7b382f82')
hrf_kernel
FirstOrderVolterra gid: 055c03b1-84e7-468b-a01c-a83f8b173a8a
hrf_length
20000.0
period
2000.0
title
Bold gid: 6756984b-c97d-40a3-9475-6a1c7b382f82
variables_of_interest
None
" ], "text/plain": [ "" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bold = monitors.Bold()\n", "bold.configure()\n", "bold" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In general, the sampling period of a monitor is in milliseconds and must be an integral multiple of the integration-step size used in a simulation. \n", "\n", "Therefore, monitors need to know the integration time step (*dt*) because some data reduction mechanims (eg, downsampling to the monitor's sampling period) depend on it. An easy way to achieve this is:" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "bold.dt = 2**-4 # Default value used in the scripts found at tvb/simulator/demos" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "HRFs are TVB Equation datatypes, and you can explore their attributes, " ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "

FirstOrderVolterra

\n", "\n", "\n", "\n", "\n", "\n", "
value
Equation type
FirstOrderVolterra
equation
1/3. * exp(-0.5*(var / tau_s)) * (sin(sqrt(1./tau_f - 1./(4.*tau_s**2)) * var)) / (sqrt(1./tau_f - 1./(4.*tau_s**2)))
parameters
{'tau_s': 0.8, 'tau_f': 0.4, 'k_1': 5.6, 'V_0': 0.02}
" ], "text/plain": [ "" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bold.hrf_kernel" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The default kernel is the **Volterra kernel**. The shape of this function depends on the following parameters: \n", "\n", "1. $\\tau_s$, rate constant of signal decay;\n", "2. $\\tau_f$, rate constant of feedback regulation;\n", "\n", "* $V_0$ and $k_1$ are parameters used in the monitor to scale the amplitude of the response. See [1]. " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's have a look at the function:" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "bold.compute_hrf()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "By default, the method **compute_hrf** gives the reflected version of the HRF. The product between this reflected HRF and the monitor's neural activity history (convolution) yields the BOLD signal. In python the indexing [::-1] will give the HRF kernel as often seen in scientific publications. " ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "[]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "4171dbb2c7cd429080d9037cf87fc11f", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAABYvklEQVR4nO3deXxU5aH/8e9kshFIwhLIAmFVIBRFDBVBI1o1iFZwoeJSsFWsFC0CtSqiV6q/Sl0uF7kKXC2Iti60BawLpcQFSiUgYFBUBJRAIiSEBEhCQmaSmfP7I5mBkAUCmZlzZj7v12tekjPPOfOcHtL58qw2wzAMAQAAIGSEBboCAAAA8C8CIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIgJD3QFrMztdmv//v2KjY2VzWYLdHUAAMBpMAxD5eXlSklJUVhYaLaFEQDPwv79+5WamhroagAAgDOQn5+vbt26BboaAUEAPAuxsbGSav8CxcXFBbg2AADgdJSVlSk1NdX7PR6KCIBnwdPtGxcXRwAEAMBiQnn4Vmh2fAMAAIQwAiAAAECIIQACAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIYSHoIOZyubRu3ToVFBQoOTlZGRkZstvtga4WAAAIMAJgkFq+fLkeeOAB/fDDD95j3bp10wsvvKCbbropgDUDAACBRhdwEFq+fLnGjh1bL/xJ0r59+zR27FgtX748QDUDAABmQAAMMi6XSw888IAMw2jwnufY1KlT5XK5/F01AABgEgTAILNu3boGLX8nMgxD+fn5WrdunR9rBQAAzIQAGGQKCgpatRwAAAg+BMAgk5yc3KrlAABA8CEABpmMjAx1SUpp8n2bzabU1FRlZGT4sVYAAMBMCIBBxm63a8Sdv6v7ydZomblz57IeIAAAIYwAGGQMw9C+9uer8w2PKiExqd579tgE/b//Xcw6gAAAhDgWgg4yu4qOat+RY+o48FJteesJbdqwXgUFBfrHzgplV3SRM7VPoKsIAAACjAAYZD7fe1iSNDi1g9pGR+ryyy+XJMVvK9CGNz5X9vclAawdAAAwA7qAg0xO3hFJ0uDu7esdH9qroyRpx4FyHapw+rlWAADATAiAQebzvLoWwO4d6h3v1C5K/RJjJUmf5dIKCABAKCMABpGjjhp9d/CoJOmC1PYN3r+orhVw057D/qwWAAAwGQJgENl1oFyGIXWJjVLn2KgG7w+qC4Xb9pX6uWYAAMBMCIBBZNeB2ta/vnVdvSc7r2u8JOnrfaVyuw2/1QsAAJiLZQLg/Pnz1atXL0VHRys9PV3r1q1rsmxBQYFuv/129evXT2FhYZo6dWqDMq+88ooyMjLUoUMHdejQQVdddZU+++wzH96B7+0qKpckndOlXaPv9+ncVtERYapwurS7uMKfVQMAACZiiQC4dOlSTZ06VTNnzlROTo4yMjI0atQo5eXlNVre4XCoc+fOmjlzpgYNGtRomTVr1ui2227TJ598ouzsbHXv3l2ZmZnat2+fL2/Fp3bWtQCem9h4AAy3h2lAcpwk6Su6gQEACFmWCIBz5szR3XffrYkTJyotLU1z585VamqqFixY0Gj5nj176oUXXtCECRMUHx/faJk33nhDkydP1gUXXKD+/fvrlVdekdvt1kcffeTLW/Gp74qa7wKWpIF13cDfFJT5pU4AAMB8TB8AnU6ntmzZoszMzHrHMzMztX79+lb7nMrKSlVXV6tjx46tdk1/qnDUaN+RY5Kkczo33gIoHQ+HOw+U+6VeAADAfEy/E0hxcbFcLpcSExPrHU9MTFRhYWGrfc4jjzyirl276qqrrmqyjMPhkMPh8P5cVmaeVrT8w5WSpPg2EerQNrLJcp4A6JkwAgAAQo/pWwA9bDZbvZ8Nw2hw7Ew9++yzeuutt7R8+XJFR0c3WW727NmKj4/3vlJTU1vl81tDXkltAOzeMabZcufWTRDZd+SYjjpqfF4vAABgPqYPgAkJCbLb7Q1a+4qKihq0Cp6J559/Xk8//bRWr16t888/v9myM2bMUGlpqfeVn59/1p/fWvIP13b/pnZs02y5Dm0jldCudo3AXXQDAwAQkkwfACMjI5Wenq6srKx6x7OysjR8+PCzuvZzzz2np556SqtWrdKQIUNOWT4qKkpxcXH1XmaRf6i2BTC1Q/MtgJLUt26W8K4iuoEBAAhFph8DKEnTp0/X+PHjNWTIEA0bNkwvv/yy8vLyNGnSJEm1LXP79u3T66+/7j1n69atkqSjR4/q4MGD2rp1qyIjIzVgwABJtd2+jz/+uN5880317NnT28LYrl07tWvX9CQKs/qhbgxgt1N0AUu14wDXf19CCyAAACHKEgFw3LhxKikp0ZNPPqmCggINHDhQK1euVI8ePSTVLvx88pqAgwcP9v55y5YtevPNN9WjRw/t2bNHUu3C0k6nU2PHjq133hNPPKFZs2b59H58If9QXRdwh+a7gKXjC0V/RwsgAAAhyRIBUJImT56syZMnN/rekiVLGhwzjOa3OvMEwWBgGIZ3FvCpJoFIUq+EtpKkvXUTRwAAQGgx/RhAnFpJhVOVTpdsNqnrabQA9uhUGxLzD1eqxuX2dfUAAIDJEACDQMGRKklSQrsoRYXbT1k+Jb6NIsPDVO0yVFBa5evqAQAAkyEABoHCstoQlxTX9BqGJwoLs3m7inOLK3xWLwAAYE4EwCBwoC4AJp5mAJSknnXdwHtLCIAAAIQaAmAQ8ATApPio0z6nZ6faiSB7mAgCAEDIIQAGgcLSlnUBS1IP70xgWgABAAg1BMAgcKDcIUnqcgZdwIwBBAAg9BAAg8CBM2gB9HQB5x86Jpe7+TUTAQBAcCEABgHvLOD40w+AKe3bKDzMJqfLraJyloIBACCUEAAtrqrapdJj1ZJaNgvYHmbzBsZ9h4/5pG4AAMCcCIAW55kBHB0Rprjolu3s161u15AfCIAAAIQUAqDFnTgD2Gaztejcru1rJ4LsO0IABAAglBAALa7IMwM49vS7fz2OtwCyFiAAAKGEAGhxJUdrA2BCbGSLz+1KFzAAACGJAGhxhyqckqRObU9/FxAPTwsgk0AAAAgtBECLK/YEwHYtbwHsdsIYQMNgLUAAAEIFAdDiPF3Andq1vAUwKT5aYTbJUePWwbrrAACA4EcAtLiSo54u4Ja3AEaGh3nXDqQbGACA0EEAtLiSijMPgBJrAQIAEIoIgBZXfBZdwJLUtX3dRBDWAgQAIGQQAC3MWeNWeVWNJCnhDCaBSMeXgqELGACA0EEAtDDPEjDhYTbFRUec0TWS42sDYEHdjiIAACD4EQAtzNP926FtpMLCWrYNnEdyfO0kkMIyWgABAAgVBEALO9sJIFLtUjDS8T2FAQBA8CMAWph3G7gznAAiHe8CLj7qlLPG3Sr1AgAA5kYAtDDvGoBnOAFEkjrERCgyvPavwYEyWgEBAAgFBEALK66oWwLmDPYB9rDZbCeMAyQAAgAQCgiAFnakolqS1LHtmc0A9kiq2w2EmcAAAIQGAqCFHa6s7QJuH3PmXcDSiRNBmAkMAEAoIABa2JFjtS2A7WPOsgUwnhZAAABCCQHQwkor6wJgm7NrAUyOYykYAABCiWUC4Pz589WrVy9FR0crPT1d69ata7JsQUGBbr/9dvXr109hYWGaOnVqo+WWLVumAQMGKCoqSgMGDNCKFSt8VHvfON4FfLYtgOwGAgBAKLFEAFy6dKmmTp2qmTNnKicnRxkZGRo1apTy8vIaLe9wONS5c2fNnDlTgwYNarRMdna2xo0bp/Hjx+uLL77Q+PHjdcstt2jjxo2+vJVWYxhGq3UBJ7MYNAAAIcVmGIYR6EqcytChQ3XhhRdqwYIF3mNpaWm64YYbNHv27GbPvfzyy3XBBRdo7ty59Y6PGzdOZWVl+uc//+k9ds0116hDhw566623TqteZWVlio+PV2lpqeLi4k7/hlrBMadLaf+1SpL01e9Hql1U+Blfq6isShc9/ZHCbNLO/zdK4XZL/LsAAIAzEsjvb7Mw/Te90+nUli1blJmZWe94Zmam1q9ff8bXzc7ObnDNkSNHNntNh8OhsrKyeq9AOXKstvs3PMymtpH2s7pWp3ZRCg+zyW1IB+t2FwEAAMHL9AGwuLhYLpdLiYmJ9Y4nJiaqsLDwjK9bWFjY4mvOnj1b8fHx3ldqauoZf/7ZOlzh6f6NlM1mO6tr2cNsSmQtQAAAQobpA6DHySHHMIyzDj4tveaMGTNUWlrqfeXn55/V558NTwvg2Y7/8/AuBXOEAAgAQLA784FjfpKQkCC73d6gZa6oqKhBC15LJCUltfiaUVFRioo6823XWtPxJWBaJwAmxtXeV1E5ARAAgGBn+hbAyMhIpaenKysrq97xrKwsDR8+/IyvO2zYsAbXXL169Vld058OVx7vAm4NXWJrWwAPlDEGEACAYGf6FkBJmj59usaPH68hQ4Zo2LBhevnll5WXl6dJkyZJqu2a3bdvn15//XXvOVu3bpUkHT16VAcPHtTWrVsVGRmpAQMGSJIeeOABXXbZZXrmmWc0ZswY/eMf/9CHH36o//znP36/vzPR2l3AXWgBBAAgZFgiAI4bN04lJSV68sknVVBQoIEDB2rlypXq0aOHpNqFn09eE3Dw4MHeP2/ZskVvvvmmevTooT179kiShg8frrfffluPPfaYHn/8cfXp00dLly7V0KFD/XZfZ6O1u4A9LYAHy2kBBAAg2FkiAErS5MmTNXny5EbfW7JkSYNjp7O84dixYzV27NizrVpAHKlsnUWgPbxjAOkCBgAg6Jl+DCAad3wbuFYeA0gXMAAAQY8AaFGttQ2cR5fY2hbAI5XVctS4WuWaAADAnAiAFnV8DGDrtAC2j4lQZN0WcIwDBAAguBEALaq1ZwHbbDZ1rmsFZCkYAACCGwHQokrruoDjW2kWsHR8KZiDjAMEACCoEQAtyFnjVlW1W5IUF916ATCxbiJIEV3AAAAENQKgBZVXVXv/3C669Vby6cJSMAAAhAQCoAWVVdVIktpFhcseZmu163bxjgGkCxgAgGBGALQgTwtgbCu2/klSlzi6gAEACAUEQAsqr2sBbM3xf9LxFkACIAAAwY0AaEFlx3zUAuiZBEIXMAAAQY0AaEHeFsBWXAJGOr4fcEmFU9Uud6teGwAAmAcB0ILKfDQGsENMpMLrJpUUH6UbGACAYEUAtKAyH40BDAuznTATmAAIAECwIgBakK/GAEpS5zjGAQIAEOwIgBbkGQMY28otgBIzgQEACAUEQAvyrAMY16b1WwA9E0EIgAAABC8CoAUdnwTiixZAuoABAAh2BEALOr4QtA/GANZ1ATMLGACA4EUAtCBftgAmtKsNgAfpAgYAIGgRAC3I0wIY74MxgMdbAJ2tfm0AAGAOBECLMQzDp7OAE9pFSpIOHnXIMIxWvz4AAAg8AqDFVDpdcrlrg5kv1gH0dAE7a9zeBacBAEBwIQBajKf1LzzMpjYR9la/fnSE3RssmQgCAEBwIgBazIn7ANtsNp98RmcmggAAENQIgBZzfBHo1h//55HAUjAAAAQ1AqDFlB3zTABp/fF/HrQAAgAQ3AiAFuPtAo7yXQsgi0EDABDcCIAWc9Th+xZA71IwtAACABCUCIAWU1EXANtF+bALmMWgAQAIagRAizlatwxMWx8GQM9agHQBAwAQnCwTAOfPn69evXopOjpa6enpWrduXbPl165dq/T0dEVHR6t3795auHBhgzJz585Vv3791KZNG6WmpmratGmqqqry1S20iqMOlyT/BEC6gAEACE6WCIBLly7V1KlTNXPmTOXk5CgjI0OjRo1SXl5eo+Vzc3N17bXXKiMjQzk5OXr00Uc1ZcoULVu2zFvmjTfe0COPPKInnnhC27dv16JFi7R06VLNmDHDX7d1Rir8MAbwxEkgbAcHAEDwsUQAnDNnju6++25NnDhRaWlpmjt3rlJTU7VgwYJGyy9cuFDdu3fX3LlzlZaWpokTJ+quu+7S888/7y2TnZ2tSy65RLfffrt69uypzMxM3Xbbbdq8ebO/buuMHHXWdQFHtv4uIB6d6iaBVLsMlR6r9tnnAACAwDB9AHQ6ndqyZYsyMzPrHc/MzNT69esbPSc7O7tB+ZEjR2rz5s2qrq4NNJdeeqm2bNmizz77TJK0e/durVy5Utddd12TdXE4HCorK6v38jdPC6Avu4Cjwu2Kr1tomnGAAAAEH9MHwOLiYrlcLiUmJtY7npiYqMLCwkbPKSwsbLR8TU2NiouLJUm33nqrnnrqKV166aWKiIhQnz59dMUVV+iRRx5psi6zZ89WfHy895WamnqWd9dynkkgvpwFLB1fCqaIcYAAAAQd0wdAj5P3vTUMo9m9cBsrf+LxNWvW6A9/+IPmz5+vzz//XMuXL9f777+vp556qslrzpgxQ6Wlpd5Xfn7+md7OGTvqhxZA6cSZwCwFAwBAsPFtimgFCQkJstvtDVr7ioqKGrTyeSQlJTVaPjw8XJ06dZIkPf744xo/frwmTpwoSTrvvPNUUVGhX/3qV5o5c6bCwhpm46ioKEVFRbXGbZ2xCqd/AqBnIggzgQEACD6mbwGMjIxUenq6srKy6h3PysrS8OHDGz1n2LBhDcqvXr1aQ4YMUURE7di2ysrKBiHPbrfLMAxTz3ytqFsGxpezgCXWAgQAIJiZPgBK0vTp0/WnP/1Jixcv1vbt2zVt2jTl5eVp0qRJkmq7ZidMmOAtP2nSJO3du1fTp0/X9u3btXjxYi1atEgPPvigt8z111+vBQsW6O2331Zubq6ysrL0+OOPa/To0bLbfTfD9mz5qwvYuxQMLYAAAAQd03cBS9K4ceNUUlKiJ598UgUFBRo4cKBWrlypHj16SJIKCgrqrQnYq1cvrVy5UtOmTdNLL72klJQUzZs3TzfffLO3zGOPPSabzabHHntM+/btU+fOnXX99dfrD3/4g9/v73Q5a9xy1rglSe0ifRwAPYtB0wIIAEDQsRlm7u80ubKyMsXHx6u0tFRxcXE+/7zDFU4Nfqq2a/u7P4xSuN13DbiffFukXy7ZpIFd4/T+bzJ89jkAAPibv7+/zcgSXcCo5en+jQoP82n4k9gODgCAYEYAtBDPDGBfrwEoSQmxtesAlhx1yu2mkRgAgGBCALQQzy4g7Xw8A1iSOrWtbQGscRs6wnZwAAAEFQKghZRXefYB9n0AjAwPU/sYtoMDACAYEQAtxLMGoD+6gKUTZgIzDhAAgKBCALSQCu8agP5Zp5DFoAEACE4EQAvx1yLQHmwHBwBAcCIAWoinBdDX28B5JLAYNAAAQYkAaCHeFkA/TAKRji8FU1zu9MvnAQAA/yAAWojfu4BpAQQAICgRAC3Euw6gnwJgQt0YwGLGAAIAEFQIgBZytG4ZGH+3ADILGACA4EIAtJBALQNTUsF2cAAABBMCoIUc9fMs4E7taieBuNgODgCAoEIAtJAKP88CjrCzHRwAAMGIAGgh/p4FLJ2wGwgTQQAACBoEQAvx9yxgSUqo6wZmKRgAAIIHAdAi3G5DFU7/zgKWTtgNhBZAAACCBgHQIqpqXN4/+2sWsHR8P+Dio+wGAgBAsCAAWkSF43gAjA73XwBMYC1AAACCDgHQIo7Vdf/GRNoVFmbz2+eyGDQAAMGHAGgRFc7aCSAxkf5r/ZOkhNjaSSAEQAAAggcB0CIq61oA2/g7AHqXgWEMIAAAwYIAaBGeLmB/LQLtcXw7OIcMg+3gAAAIBgRAi/B0Afu7BdCzHVy1y1Ap28EBABAUCIAWceIkEH+KCrcrrm7vYdYCBAAgOBAALeL4JBD/dgFLUkLdWoDsBgIAQHAgAFpEoFoApROXgmEiCAAAwYAAaBGV3gAYuBbAYrqAAQAICgRAiwjUOoASi0EDABBsLBMA58+fr169eik6Olrp6elat25ds+XXrl2r9PR0RUdHq3fv3lq4cGGDMkeOHNF9992n5ORkRUdHKy0tTStXrvTVLZyVQHYBJ7RjMWgAAIKJJQLg0qVLNXXqVM2cOVM5OTnKyMjQqFGjlJeX12j53NxcXXvttcrIyFBOTo4effRRTZkyRcuWLfOWcTqduvrqq7Vnzx79/e9/144dO/TKK6+oa9eu/rqtFgloFzBjAAEACCr+TxNnYM6cObr77rs1ceJESdLcuXP1r3/9SwsWLNDs2bMblF+4cKG6d++uuXPnSpLS0tK0efNmPf/887r55pslSYsXL9ahQ4e0fv16RURESJJ69Ojhnxs6A5UB7AJOoAsYAICgYvoWQKfTqS1btigzM7Pe8czMTK1fv77Rc7KzsxuUHzlypDZv3qzq6trFjN99910NGzZM9913nxITEzVw4EA9/fTTcrlcvrmRsxSoreAkJoEAABBsTN8CWFxcLJfLpcTExHrHExMTVVhY2Og5hYWFjZavqalRcXGxkpOTtXv3bn388ce64447tHLlSu3atUv33Xefampq9F//9V+NXtfhcMjhOB6CysrKzvLuTl+lIzBbwUknjgF0yjAM2Ww2v9cBAAC0HtO3AHqcHDpOFUQaK3/icbfbrS5duujll19Wenq6br31Vs2cOVMLFixo8pqzZ89WfHy895Wamnqmt9NildWB7wJ2utwqO1bj988HAACty/QBMCEhQXa7vUFrX1FRUYNWPo+kpKRGy4eHh6tTp06SpOTkZPXt21d2+/FAlZaWpsLCQjmdjU92mDFjhkpLS72v/Pz8s7m1FqkM4Czg6Ai7YqPqtoNjHCAAAJZn+gAYGRmp9PR0ZWVl1TuelZWl4cOHN3rOsGHDGpRfvXq1hgwZ4p3wcckll+i7776T2+32ltm5c6eSk5MVGRnZ6HWjoqIUFxdX7+Uvni7gQMwClqTOsUwEAQAgWJg+AErS9OnT9ac//UmLFy/W9u3bNW3aNOXl5WnSpEmSalvmJkyY4C0/adIk7d27V9OnT9f27du1ePFiLVq0SA8++KC3zK9//WuVlJTogQce0M6dO/XBBx/o6aef1n333ef3+zsdnlnAgZgEIjETGACAYGL6SSCSNG7cOJWUlOjJJ59UQUGBBg4cqJUrV3qXbSkoKKi3JmCvXr20cuVKTZs2TS+99JJSUlI0b9487xIwkpSamqrVq1dr2rRpOv/889W1a1c98MADevjhh/1+f6fjWHXdJJCoAAXA2LqJIMwEBgDA8iwRACVp8uTJmjx5cqPvLVmypMGxESNG6PPPP2/2msOGDdOGDRtao3o+5axxq9pVO4klJiIwj4zFoAEACB6W6AIOdZ5t4CS6gAEAwNkjAFpARd34vwi7TZHhgXlkBEAAAIIHAdACvLuARASm9U86vhj0QcYAAgBgeQRAC/B0AbeNCtyQTe92cIwBBADA8giAFlAR4CVgJKlzXRfwwaMO764qAADAmgiAFnAsgLuAeHi3g6txq9zBdnAAAFgZAdACjm8DF7gu4DaRdrWr64JmLUAAAKyNAGgBni7gQLYASscngjAOEAAAayMAWoB3EkgAWwAlloIBACBYEAAtwAyTQCQCIAAAwYIAaAFmmAQisR8wAADBggBoAWaYBCIdbwE8SAsgAACWRgC0gErTTAKpC4DlTAIBAMDKThkAb7rpJpWVlUmSXn/9dTkctP74W6VZuoAZAwgAQFA4ZQB8//33VVFRIUn65S9/qdLSUp9XCvVVOMzRBdw5lgAIAEAwOGWi6N+/v2bMmKErrrhChmHor3/9q+Li4hotO2HChFavIKSq6toA2CYysD32nU9oATQMQzabLaD1AQAAZ+aUAXDhwoWaPn26PvjgA9lsNj322GONfvHbbDYCoI8c8wTAiABPAqmbBVxV7VaF0+XdGQQAAFjLKb/Bhw8frg0bNkiSwsLCtHPnTnXp0sXnFcNxnmVgAr0OYExkuGIi7ap0ulRc7iAAAgBgUafdp1hTU6MJEyYwCSQAvF3AEYENgBITQQAACAanHQDDw8O1bNkyuVwuX9YHjThmqgDo2Q+YAAgAgFW1aFbBlVdeqTVr1vioKmjKMZNMApFOXAuQAAgAgFW1aBDXqFGjNGPGDH311VdKT09X27Zt670/evToVq0cannGAEaboQUw1rMbCItBAwBgVS0KgL/+9a8lSXPmzGnwns1mo3vYB9xuQ44atySzdAEzBhAAAKtrUQB0u92+qgea4Al/kjlaAL2LQdMFDACAZbV4HY+PPvpIH330kYqKiuoFQpvNpkWLFrVq5XB8/J9kkgDIJBAAACyvRQHw97//vZ588kkNGTJEycnJ7AThB54AGBkeJntY4P/3Pt4FzBhAAACsqkUBcOHChVqyZInGjx/vq/rgJN5FoE3Q+icxBhAAgGDQonVFnE6nhg8f7qu6oBFmWgRaOj4LuNLpUqWzJsC1AQAAZ6JFAXDixIl68803fVUXNOL4GoDmCIBtI+2Kjqj9a1NcTjcwAABWdMou4OnTp3v/7Ha79fLLL+vDDz/U+eefr4iIiHplG1seBmfHTGsASrWTfRLaRemHw8d08GiVuneKCXSVAABAC50yAObk5NT7+YILLpAkffXVV/WOMyHEN45vAxf4XUA8vAGQFkAAACzplAHwk08+8Uc9Tmn+/Pl67rnnVFBQoB/96EeaO3euMjIymiy/du1aTZ8+XV9//bVSUlL00EMPadKkSY2Wffvtt3XbbbdpzJgxeuedd3x0B2emymRdwBITQQAAsDrzNCs1Y+nSpZo6dapmzpypnJwcZWRkaNSoUcrLy2u0fG5urq699lplZGQoJydHjz76qKZMmaJly5Y1KLt37149+OCDzYbJQDLbLGBJ6hzLWoAAAFiZJQLgnDlzdPfdd2vixIlKS0vT3LlzlZqaqgULFjRafuHCherevbvmzp2rtLQ0TZw4UXfddZeef/75euVcLpfuuOMO/f73v1fv3r39cSst5ukCNssYQEnqTAsgAACWZvoA6HQ6tWXLFmVmZtY7npmZqfXr1zd6TnZ2doPyI0eO1ObNm1VdXe099uSTT6pz5866++67W7/ireSYyZaBkY4vBcMsYAAArKnFW8H5W3FxsVwulxITE+sdT0xMVGFhYaPnFBYWNlq+pqZGxcXFSk5O1qeffqpFixZp69atp10Xh8Mhh+N4q1dZWdnp38gZqnIyBhAAALQu07cAepw8y9gwjGZnHjdW3nO8vLxcP//5z/XKK68oISHhtOswe/ZsxcfHe1+pqaktuIMzY8oWQAIgAACWZvoWwISEBNnt9gatfUVFRQ1a+TySkpIaLR8eHq5OnTrp66+/1p49e3T99dd733e73ZKk8PBw7dixQ3369Glw3RkzZtRbF7GsrMznIdCMYwAT2nkmgdAFDACAFZk+AEZGRio9PV1ZWVm68cYbvcezsrI0ZsyYRs8ZNmyY3nvvvXrHVq9erSFDhigiIkL9+/fXtm3b6r3/2GOPqby8XC+88EKToS4qKkpRUVFneUctc8xZG0xN1QVcNwbwqKNGx5wuU9UNAACcmukDoFS7G8n48eM1ZMgQDRs2TC+//LLy8vK86/rNmDFD+/bt0+uvvy5JmjRpkl588UVNnz5d99xzj7Kzs7Vo0SK99dZbkqTo6GgNHDiw3me0b99ekhocD7SqGvN1AcdGhSsyPEzOGreKjzqU2pHdQAAAsBJLBMBx48appKRETz75pAoKCjRw4ECtXLlSPXr0kCQVFBTUWxOwV69eWrlypaZNm6aXXnpJKSkpmjdvnm6++eZA3cIZqzLhOoA2m02d20Vp35FjOkgABADAciwRACVp8uTJmjx5cqPvLVmypMGxESNG6PPPPz/t6zd2DTPwjgE0WTdrQrtI7TtyTMXlTAQBAMBqLDMLOFR5A2C4uR5VZ89agEwEAQDAcsyVKtDAMROuAyixFAwAAFZGADS5KhOuAygRAAEAsDICoMmZcR1A6cS1AAmAAABYDQHQ5EzbBcx+wAAAWBYB0OSqqusWgjZdC2BtADxICyAAAJZDADSxGpdbTpe5AyDLwAAAYD0EQBOrqnF7/2y2LuDOdQGw3FHjnagCAACsgQBoYp7xf5IUZbJ1AOPahCvSXlsnJoIAAGAt5koVqOfEJWBsNluAa1OfzWY7YSYwE0EAALASAqCJeZaAMVv3r8fxmcC0AAIAYCUEQBPzLgFjsgkgHiwGDQCANREATez4ItDmfEwsBg0AgDWZM1lAkgW6gL0tgIwBBADASgiAJlZlkS7gg4wBBADAUgiAJlZVY859gD08k0DYDQQAAGshAJrYMac5dwHxYAwgAADWRAA0MbOPAezMdnAAAFgSAdDEPAtBR4ebNADWdQGXVdXIUcN2cAAAWAUB0MQ86wCadRmY+DYRJ2wHx0xgAACswpzJApJOaAE0aRewzWbztgIeKKsKcG0AAMDpIgCamHcWsEm7gCWpS1xtACwiAAIAYBkEQBOrqq6dBRxl0i5gSUqMjZYkFTERBAAAyzBvsoDpJ4FIUmIcXcAAAFgNAdDEHDW1LYBmXQhakrrE1bYAHiijBRAAAKsgAJqYtwXQzF3A3gBICyAAAFZh3mQBOTxjAE3cBdwl1jMJhBZAAACsggBoYsf3AjbvY/K0ABaV0wIIAIBVmDdZwNsCaOYxgJ5JIIcrq9kNBAAAiyAAmpgVWgDj20QoMry2fnQDAwBgDeZNFvBOAjHzGECbzXZ8HCDdwAAAWIJlAuD8+fPVq1cvRUdHKz09XevWrWu2/Nq1a5Wenq7o6Gj17t1bCxcurPf+K6+8ooyMDHXo0EEdOnTQVVddpc8++8yXt9BiVd4uYHM/Ju84QFoAAQCwBHMnizpLly7V1KlTNXPmTOXk5CgjI0OjRo1SXl5eo+Vzc3N17bXXKiMjQzk5OXr00Uc1ZcoULVu2zFtmzZo1uu222/TJJ58oOztb3bt3V2Zmpvbt2+ev2zolK7QASiwGDQCA1VgiAM6ZM0d33323Jk6cqLS0NM2dO1epqalasGBBo+UXLlyo7t27a+7cuUpLS9PEiRN111136fnnn/eWeeONNzR58mRdcMEF6t+/v1555RW53W599NFH/rqtZhmGYYmFoCWpS912cAfYDg4AAEswfQB0Op3asmWLMjMz6x3PzMzU+vXrGz0nOzu7QfmRI0dq8+bNqq6ubvScyspKVVdXq2PHjq1T8bPkCX+SdbqAaQEEAMAawgNdgVMpLi6Wy+VSYmJiveOJiYkqLCxs9JzCwsJGy9fU1Ki4uFjJyckNznnkkUfUtWtXXXXVVU3WxeFwyOE43spVVlbWkltpEc8SMJL5u4A9k0AO0gIIAIAlmLtp6QQ2m63ez4ZhNDh2qvKNHZekZ599Vm+99ZaWL1+u6OjoJq85e/ZsxcfHe1+pqaktuYUW8SwBE2aTIuxN36cZ0AIIAIC1mD4AJiQkyG63N2jtKyoqatDK55GUlNRo+fDwcHXq1Kne8eeff15PP/20Vq9erfPPP7/ZusyYMUOlpaXeV35+/hnc0ek5cRHo5oKuGRyfBEILIAAAVmD6ABgZGan09HRlZWXVO56VlaXhw4c3es6wYcMalF+9erWGDBmiiIgI77HnnntOTz31lFatWqUhQ4acsi5RUVGKi4ur9/KV44tAm7v7V5K61LUAlh6r9s5cBgAA5mX6AChJ06dP15/+9CctXrxY27dv17Rp05SXl6dJkyZJqm2ZmzBhgrf8pEmTtHfvXk2fPl3bt2/X4sWLtWjRIj344IPeMs8++6wee+wxLV68WD179lRhYaEKCwt19OhRv99fYzxBKjrc/I8oLjpcUXX1ZBwgAADmZ/pJIJI0btw4lZSU6Mknn1RBQYEGDhyolStXqkePHpKkgoKCemsC9urVSytXrtS0adP00ksvKSUlRfPmzdPNN9/sLTN//nw5nU6NHTu23mc98cQTmjVrll/uqzmeRaCjLNACaLPZlBgXrbxDlTpQVqXUjjGBrhIAAGiGJQKgJE2ePFmTJ09u9L0lS5Y0ODZixAh9/vnnTV5vz549rVQz3zi+CLT5WwCl2nGAtQGQFkAAAMzOGukiBFllEWiPLswEBgDAMgiAJuUdA2jyRaA9Er27gRAAAQAwO2ukixBklX2APbrULQVzkC5gAABMjwBoUlXeLmBrPCLPWoCFdAEDAGB61kgXIchRbZ11AKXju4EQAAEAMD8CoEl5J4FYpAs4Ob6NJKmwtMq77R4AADAnAqBJWW0SSHJ8bQtgpdOlsmM1Aa4NAABojjXSRQjyTgKxSBdwdIRdHWJqt9krKDsW4NoAAIDmEABNyrMTiBW2gvPwdAMXHGEcIAAAZmaddBFiHDXWagGUjncDF5QSAAEAMDMCoEl5WwCtFADbewIgXcAAAJgZAdCkrLYXsHRCFzAtgAAAmJp10kWIqbLYXsCSlORZC5AACACAqREATcphsWVgpONdwPvpAgYAwNSsky5CTJXFFoKWWAwaAACrIACalNW2gpNYDBoAAKsID3QF0LjjC0FbJ6N7FoM+XFmtgrJjiq9bGDoUVVW7tGXvYW0vKFNRuUPVLrc6xkSqW8c2urB7B3XvGCObzRboagIAQhQB0KSOLwRtnRZAqbYb+HBltQqOVKl/Ulygq+N33xUd1f+t/V4rtxWowulqslxqxza64YKuGpveTT06tfVjDQEAIACalmchaCtNApFqu4G/KSgLuaVgKhw1enbVt3p9w155hj8mxkXpwu4d1LV9G4Xbw3S4wqldReXatq9U+YeO6X8//k4vffKdrjs/RfdfcY76JcUG9iYAACGDAGhSVlwIWpKS4kNvMehdB8o18fXN2ltSKUm6Ki1R947orfTuHRQW1rCbt9JZow+3F+lvm/O1blex3vtivz74cr9uu6i7fpvZTx3bRvr7FgAAIYYAaEKGYaiqxnoLQUtSSvvQWgx6/XfFuvfPW1TuqFHX9m30x5vPU8a5nZs9JyYyXKMHpWj0oBR9vb9UL378nf75VaHe2Jin977Yr8d+OkA/S+/GGEEAgM9YK12ECKfL7e1GtNJewNLxxaBDoQVww+4S3fXaJpU7anRRz4567zeXnjL8nexHKfFa8PN0vf2ri5WWHKeyqho99Pcvdfdrm3WgLDRCNADA/wiAJuSoWwNQsuAYQO9+wMEdXr7aV6q7lmxSVbVbP+nfRX+eeNFZdd1e3LuT3rv/Ej18TX9F2sP08bdFunrOWv1zW0Er1hoAgFrWShchwrMEjM0mRdqt9Yi8+wEfCd7FoEuOOnTvn7eo0unS8D6dNP+OCxXVCrO1w+1h+vXlffT+lEt1Xtd4lVXV6NdvfK7/+sdX3r8TAAC0BmulixDhOGEJGKuNA/MsBn2s2qXSY9UBrk3rc7kN3f9mjvYdOaZeCW214OfprT5Rp29irJZPHq5JI/pIkl7P3qub5q/X7oNHW/VzAAChiwBoQlZcBNojOsLu7QrdfyT4uoH/tG63sneXqG2kXS+PT1d8G98sdh1hD9Mjo/pryS9/rI5tI/VNQZmu/9//6J2cfT75PABAaLFewggBVl0E2qNbh9pu4B8OVwa4Jq1rR2G5/nv1TknSf10/QOcm+n7dvsv7ddE/H8jQ0F4dVeF0aerSrfrd375QpZOt9gAAZ44AaEJWXQTao2t7TwAMnpnALreh3/39CzldtZM+bhmS6rfPToyL1pv3XKwHrjxXNpv0ty0/aPSLn+rbwjK/1QEAEFysmTCCnFUXgfbwtADuOxI8AfCvm/P15Q+lio0K1x9vOs/vYzPtYTZNu7qv3px4sbrERum7oqMa8+KnemPj3qCdbAMA8B0CoAl5xwBabBFoj24dYiQFTxdwaWW1nvvXDknS1Kv7qkvdWoeBMKxPJ/3zgQxd3q+zHDVuzVzxle5/M0dlVcE34QYA4DvWTBhBzrsLiEVbAD1dwMHSAvg/H+7UoQqnzu3SThOG9Qh0ddSpXZQW3/ljPXptf4WH2fTBtgJdN2+dtuw9FOiqAQAswjIBcP78+erVq5eio6OVnp6udevWNVt+7dq1Sk9PV3R0tHr37q2FCxc2KLNs2TINGDBAUVFRGjBggFasWOGr6reIw+pdwB2DZwxg/qFKvbFxryTpiet/pAiTrMsYFmbTry7ro79NGqZuHdoo/9AxjV2Yrd+/9zUTRAAAp2SOb7NTWLp0qaZOnaqZM2cqJydHGRkZGjVqlPLy8hotn5ubq2uvvVYZGRnKycnRo48+qilTpmjZsmXeMtnZ2Ro3bpzGjx+vL774QuPHj9ctt9yijRs3+uu2muRpAYy2aBewpwXwSGW1jjqsHUbmfbRL1S5DGecm6NJzEwJdnQYGd++gD6ZkaGx6NxmG9Oqne3TN3HVa/31xoKsGADAxm2GBEeRDhw7VhRdeqAULFniPpaWl6YYbbtDs2bMblH/44Yf17rvvavv27d5jkyZN0hdffKHs7GxJ0rhx41RWVqZ//vOf3jLXXHONOnTooLfeeuu06lVWVqb4+HiVlpYqLi7uTG+vgUX/ydVT73+j0YNSNO+2wa12XX8a9PvVKj1WrX9NvUz9kny/XIov7D54VFfNWSu3Ia2YPFyDu3cIdJWatWZHkR5dvk3767bhu+68ZD0yqr9SO8YEuGatp7SyWj8cqVTJUadKKhwqLnequMKhQ0edqnS6VOGsUaXTpcq6/9a4DLkNQ4YhGYYhtyEZMhQeFqbI8DBF2mv/G2G31f4cbldMhF0xUXa1jQxX26hwtY20KyYqXO2i7IqJDFfbE96LibSrbVS42kTa1SbCbpoWYgDN89X3t5WEB7oCp+J0OrVlyxY98sgj9Y5nZmZq/fr1jZ6TnZ2tzMzMesdGjhypRYsWqbq6WhEREcrOzta0adMalJk7d26TdXE4HHI4HN6fy8p8swyH1SeBSLUzgUuPVeuHw5WWDYBzP9wltyFdldbF9OFPql0z8F/TLtOzq3bojY179cG2AmVtP6C7LumlX13W+6z2KvanSmeNdhSW69vCcuUWVyivpFL5hyuVd6hS5VXmblGOsNsUHVEbBj2h0PPfmEi7973a0Bkme5hN4XabwsNsCg8Lq/2vvTaQ2sNqX5Lk+We659/rnn+1e4/r+PuGIblPCLuGIbndx392e8Owp2zDn2v/bMjQCdc66dpuw5BO+tmoq4PbfdLP3mue4r91n3eyk+fcnzwLv+H7J5/f4MBZnd/g/RaWP1lz99Pw2qHnhsFdNeaCroGuRtAxfQAsLi6Wy+VSYmJiveOJiYkqLCxs9JzCwsJGy9fU1Ki4uFjJyclNlmnqmpI0e/Zs/f73vz/DOzl9jmrPOoDWHAMo1QbAr/eXWXYc4N6SCr3/5X5J0tSr+ga4NqcvNjpCT90wULcP7a6n3v9G678v0cK13+u19Xv084u7a2JGbyUGcBbziQzDUEFplbYXlNW9yrW9oEy5JRVqJAN4JbSLVEK7KCW0i1Knuj93bBupdnUtcjGR4YqJqm3JC7eHKcwmhdlsCrPZvF+mNW5D1S63nDW1L0eN2/tzZbVLlY4aVThqVFHXmnjUUXfMWaMKR11Lo8NVV6ZG7rr6VrsMVbtqTB9UASsZlNo+0FUISqYPgB4n/wvJMIxm12JrrPzJx1t6zRkzZmj69Onen8vKypSa2voLAl8zMFmpHWPUu3PbVr+2v3RtX9vtaNWZwH9alyu3IY3o21kDu8YHujotlpYcpzcmDtVH24s096Od+mpfmV5Zl6tXP92jq9ISddvQ7rr0nARvC5OvVVW7tOvA0dqgV3g88DW1X3RCuyilJcfqnC7t1KNjjFI7xqh7xxh16xCjNpHm+oeRYRhyutw65nTpWLXrlP+tdLpU7XLL5TZU7TLkcrtV7TJU4z7xWG1AdRvG8dak+v/x/n/V8Z9r/2u32SRv6FVd8K0NvyeGYemEMmG1n2Krd85JP6uu3Ik/2074+YTPtDX2s+fzwnTS53vKHC934v8PnzxK6eR/GzT8x4LR7PunOt9o8fnNj6Jq8fWNE8u27LOC1YCU0Oyi9TXTB8CEhATZ7fYGLXNFRUUNWvA8kpKSGi0fHh6uTp06NVumqWtKUlRUlKKios7kNlpkQEqc5f/CW3k7uEMVTv1tS74k6d7Lege4NmfOZrPpqgGJujKti9bsPKj5n3ynTXsOa9XXhVr1daE6tY3UlWlddGVaoi7q2VEdWqGL2DAM/XD4mL4tLNeOwrK6/5Zrd3GFXO6GX17hYTb16dxOacmxSkuO8746x/r+96y12Gw2RYXbFRVuV/tAVwYATpPpA2BkZKTS09OVlZWlG2+80Xs8KytLY8aMafScYcOG6b333qt3bPXq1RoyZIgiIiK8ZbKysuqNA1y9erWGDx/ug7sIPccDoPVaAF/P3qOqarcGdo3TsD6dAl2ds2az2XRFvy66ol8XfVtYprc/y9eKnH0qqXDqr5t/0F83/yBJ6t25rc7vGq+eCW3Vs1NbJcZFK65NuOKiIxRut9WO43IbqnDW6HBFtY5UOlV81KH8w8eUV1I7Rm9vSYUqnK5G69E+JkJpSZ6QVxv4zk1spyiL7nkNAFZm+gAoSdOnT9f48eM1ZMgQDRs2TC+//LLy8vI0adIkSbVds/v27dPrr78uqXbG74svvqjp06frnnvuUXZ2thYtWlRvdu8DDzygyy67TM8884zGjBmjf/zjH/rwww/1n//8JyD3GGy6eraDs1gArKp26fXs2nX/fnVZH79v+eZr/ZPiNGv0jzTzujR9lntIWd8c0L93HtTu4grtPlj7OlsR9tpWvf5JseqXFKf+SbHqnxyrpLjooPvfEwCsyhIBcNy4cSopKdGTTz6pgoICDRw4UCtXrlSPHrW7MhQUFNRbE7BXr15auXKlpk2bppdeekkpKSmaN2+ebr75Zm+Z4cOH6+2339Zjjz2mxx9/XH369NHSpUs1dOhQv99fMPJsB1dS4VSls0YxkZb4q6b3vtivQxVOdW3fRtcOTAp0dXwmwh6mS85J0CXn1K5teLjCqZz8w/q2sFx7iyu1p6RCxUcdKquqUdmxarkNwzteq02kXR1iItQhJlId20aqW4cYpXZso+514/R6JrRlORQAMDlLrANoVqwj1LzzZv1L5VU1ypp2mc5NtMZSMGNe+lRf5B/R70b2031XnBPo6gAAfIDvb4vsBAJrSq1rBcw7ZI2JIF/tK9UX+UcUYbdp3I9bf3Y3AABmQQCEz/RMqA2Ae0qsEQD/sqF27N81A5OV0M46s1ABAGgpAiB8pken2nUM95ac/cQCXyurqtY/ttYu/Pzzod0DXBsAAHyLAAif6VG3B+1eC7QALt/yg45Vu9Q3sZ0u6tUx0NUBAMCnCIDwGSu1AP5tS+1aeLdf1J2lSgAAQY8ACJ/xjAH84fAx1bjcAa5N074rKtfX+8sUHmbTaDYcBwCEAAIgfCYxNlqR4WGqcRvaf6Qq0NVpkmfs32V9O6tjK2yHBgCA2REA4TNhYTbvOMA9Ju0GNgzDGwDHXJAS4NoAAOAfBED4lHccoEnXAszJP6K8Q5WKibTr6gGJga4OAAB+QQCET/XoVDcTuNicLYDv1rX+ZQ5ItMx2dQAAnC0CIHyqpycAmrAFsMbl1vtferp/mfwBAAgdBED4lJmXgvn0+xIVH3WqY9tIXXpuQqCrAwCA3xAA4VPeLuCSSrndRoBrU98/tu6TJF13XrIi7PwqAABCB9968Kmu7dsoPMwmR41bhWXmWQqmqtqlf31VKInZvwCA0EMAhE+F28O8rYDfHzwa4Noc9+H2A6pwutStQxul9+gQ6OoAAOBXBED43Dld2kmSvisyTwD0rP03elAKW78BAEIOARA+16dzbQA0SwvgkUqn1uwoksTsXwBAaCIAwufM1gL4z68KVe0y1D8pVv2SYgNdHQAA/I4ACJ/zBMDvD5pjKRjP7F9a/wAAoYoACJ/rXdcFfLDcodJj1QGtS0HpMW3MPSRJGs3sXwBAiCIAwufaRYUrOT5aUuDHAb73xX4ZhnRRz47q2r5NQOsCAECgEADhF56JIIEeB+id/UvrHwAghBEA4RfecYABDIDfFZXr6/1lCg+z6brzkgNWDwAAAo0ACL/o07l2T+BAdgF7Wv9G9O2sDm0jA1YPAAACjQAIv+hT1wK4K0AtgIZheAPgmMHM/gUAhDYCIPyiX2Ltent5hypV6azx++fn5B9R3qFKxUTadVVaF79/PgAAZkIAhF90ahelzrFRMgxpR2G53z//3brWv5E/SlJMZLjfPx8AADMhAMJv0pLjJEnbC/wbAGtcbr3/JbN/AQDwIADCb9Lqtl3bXlDm18/99PsSFR91qmPbSF16ToJfPxsAADMiAMJvjrcA+jcAerZ+++n5yYqw81ceAAC+DeE3/ZNrWwC/LSyXYRh++cxjTpf+9VWhJGkM3b8AAEiyQAA8fPiwxo8fr/j4eMXHx2v8+PE6cuRIs+cYhqFZs2YpJSVFbdq00eWXX66vv/7a+/6hQ4f0m9/8Rv369VNMTIy6d++uKVOmqLS01Md3E9r6dG6nSHuYjjpq9MPhY375zI++PaAKp0vdOrTRhd07+OUzAQAwO9MHwNtvv11bt27VqlWrtGrVKm3dulXjx49v9pxnn31Wc+bM0YsvvqhNmzYpKSlJV199tcrLaycf7N+/X/v379fzzz+vbdu2acmSJVq1apXuvvtuf9xSyIqwh3l3BPnGT93A7+TUrf13QYpsNptfPhMAALOzGf7qizsD27dv14ABA7RhwwYNHTpUkrRhwwYNGzZM3377rfr169fgHMMwlJKSoqlTp+rhhx+WJDkcDiUmJuqZZ57Rvffe2+hn/e1vf9PPf/5zVVRUKDz89JYJKSsrU3x8vEpLSxUXF3eGdxlapv91q5Z/vk8PXHmupl3d16efdaTSqR//4UNVuwytnnaZ+tatRQgACG18f5u8BTA7O1vx8fHe8CdJF198seLj47V+/fpGz8nNzVVhYaEyMzO9x6KiojRixIgmz5Hk/UvQXPhzOBwqKyur90LLnNc1XpK0bZ/vu9v/+VWhql2G0pLjCH8AAJzA1AGwsLBQXbo03LWhS5cuKiwsbPIcSUpMTKx3PDExsclzSkpK9NRTTzXZOugxe/Zs71jE+Ph4paamns5t4ASDUttLkr7IP+LziSArcmpn/zL5AwCA+gISAGfNmiWbzdbsa/PmzZLU6LgtwzBOOZ7r5PebOqesrEzXXXedBgwYoCeeeKLZa86YMUOlpaXeV35+/qluFScZkBynCLtNJRVOn04E+eFwpT7LPSSbTRo9iAAIAMCJArIn1v33369bb7212TI9e/bUl19+qQMHDjR47+DBgw1a+DySkpIk1bYEJicne48XFRU1OKe8vFzXXHON2rVrpxUrVigiIqLZOkVFRSkqKqrZMmhedIRdaclx+vKHUm3NP6LUjjE++Zx/1G39dnGvTkpp38YnnwEAgFUFJAAmJCQoIeHUOzIMGzZMpaWl+uyzz3TRRRdJkjZu3KjS0lINHz680XN69eqlpKQkZWVlafDgwZIkp9OptWvX6plnnvGWKysr08iRIxUVFaV3331X0dHRrXBnOB2DurXXlz+U6ov8I7reB61zhmF4u39vvLBrq18fAACrM/UYwLS0NF1zzTW65557tGHDBm3YsEH33HOPfvrTn9abAdy/f3+tWLFCUm3X79SpU/X0009rxYoV+uqrr/SLX/xCMTExuv322yXVtvxlZmaqoqJCixYtUllZmQoLC1VYWCiXyxWQew0l3nGAPxzxyfW/3l+m74qOKio8TNcMTPLJZwAAYGUBaQFsiTfeeENTpkzxzuodPXq0XnzxxXplduzYUW8R54ceekjHjh3T5MmTdfjwYQ0dOlSrV69WbGztTNAtW7Zo48aNkqRzzjmn3rVyc3PVs2dPH94RLkg9PhO42uVu9e3Zln9e2/p31YBExUU3360PAEAoMvU6gGbHOkJnxu02NPipLJUeq9Y7912iC+paBFtDjcuti2d/rOKjDi26c4iuTGt8rCgAIHTx/W3yLmAEp7Awmy7q1VGStGF3Sate+z/fFav4qEMdYiJ0Wd/OrXptAACCBQEQAXFx706SWj8A/m3zD5Kk6weltHrXMgAAwYJvSATE0LoWwM17DqvG5W6Va5YcdWj1N7WLfY/7MYt0AwDQFAIgAiItOU5x0eE66qjR1/tbZ0u9ZZ//oGqXofO7xetHKfGtck0AAIIRARABYQ+z6aJetd3A678/+25gwzD09qbanVlu/XH3s74eAADBjACIgMk4t3Yx8DU7is76Wp/lHtLugxWKibRrNHv/AgDQLAIgAuYn/btIkjbvPazSyuqzutabn+VJqt33t12U6Ze3BAAgoAiACJjUjjHqm9hOLrehtbsOnvF1Ckur9MGXBZKkn1/co7WqBwBA0CIAIqCuqGsF/Hj7gTO+xmvZe1TjNnRRr44a2JXJHwAAnAoBEAF1Vd1OHR9tL1JVdcv3Ya501ujNjbXdv3df2qtV6wYAQLAiACKg0rt3UEp8tModNfr425ZPBvnrpnyVHqtW944x3jAJAACaRwBEQIWF2TRmcFdJ0oqcfS06t6rapQVrv5ck3ZPRS/YwW6vXDwCAYEQARMDdWBcA1+wo0sFyx2mf9+bGPB0ocyglPlq3sPMHAACnjQCIgOubGKsLUtur2mXoLxv2ntY55VXVmr+mtvXv/p+cq6hwuy+rCABAUCEAwhQmZtRO4Pjzhr2nNRnkhQ93qfioQz07xWhsejdfVw8AgKBCAIQpXPOjJHXr0EaHKpx6bf2eZstuLyjTq3VlZo3+kSLD+WsMAEBL8M0JUwi3h+mBK8+VJL348XdNjgU85nRpyls5crkNZQ5I1OX9uvizmgAABAUCIEzj5gu76byu8Sp31Oi3f/tCbrdR732X29CDf/tCu4qOqnNslJ6+6bwA1RQAAGsjAMI0wsJsev5ngxQdEaZ/7zyoR5Z/KUdN7XjA8qpqTXkrRx9sK1CE3aZ5tw5WQruoANcYAABrshmGYZy6GBpTVlam+Ph4lZaWKi4uLtDVCRrvfbFfD7ydI7chpcRH60dd47V5zyEdrqxWhN2mueMG67rzkwNdTQCARfH9LYUHugLAya4flKKYSLtmLN+m/aVV2l9aJUnqndBWz4w9Xz/u2THANQQAwNoIgDClK9MStfZ3CVq366AOlFWpV0I7Xdy7o8LtjFoAAOBsEQBhWm0i7cr8UVKgqwEAQNChOQUAACDEEAABAABCDAEQAAAgxBAAAQAAQgwBEAAAIMQQAAEAAEIMARAAACDEmD4AHj58WOPHj1d8fLzi4+M1fvx4HTlypNlzDMPQrFmzlJKSojZt2ujyyy/X119/3WTZUaNGyWaz6Z133mn9GwAAADAZ0wfA22+/XVu3btWqVau0atUqbd26VePHj2/2nGeffVZz5szRiy++qE2bNikpKUlXX321ysvLG5SdO3eubDabr6oPAABgOqbeCWT79u1atWqVNmzYoKFDh0qSXnnlFQ0bNkw7duxQv379GpxjGIbmzp2rmTNn6qabbpIkvfbaa0pMTNSbb76pe++911v2iy++0Jw5c7Rp0yYlJyf756YAAAACzNQtgNnZ2YqPj/eGP0m6+OKLFR8fr/Xr1zd6Tm5urgoLC5WZmek9FhUVpREjRtQ7p7KyUrfddptefPFFJSWx3RgAAAgdpm4BLCwsVJcuXRoc79KliwoLC5s8R5ISExPrHU9MTNTevXu9P0+bNk3Dhw/XmDFjTrs+DodDDofD+3NZWdlpnwsAAGAWAWkBnDVrlmw2W7OvzZs3S1Kj4/MMwzjluL2T3z/xnHfffVcff/yx5s6d26J6z5492zsZJT4+XqmpqS06HwAAwAwC0gJ4//3369Zbb222TM+ePfXll1/qwIEDDd47ePBggxY+D093bmFhYb1xfUVFRd5zPv74Y33//fdq3759vXNvvvlmZWRkaM2aNY1ee8aMGZo+fbr359LSUnXv3p2WQAAALMTzvW0YRoBrEkCGiX3zzTeGJGPjxo3eYxs2bDAkGd9++22j57jdbiMpKcl45plnvMccDocRHx9vLFy40DAMwygoKDC2bdtW7yXJeOGFF4zdu3efdv3y8/MNSbx48eLFixcvC77y8/PPMKFYn80wzB1/R40apf379+v//u//JEm/+tWv1KNHD7333nveMv3799fs2bN14403SpKeeeYZzZ49W6+++qrOPfdcPf3001qzZo127Nih2NjYRj/HZrNpxYoVuuGGG067bm63W/v371dsbGyrLyVTVlam1NRU5efnKy4urlWvbQbcn/UF+z1yf9YX7PcY7Pcn+e4eDcNQeXm5UlJSFBZm6vmwPmPqSSCS9MYbb2jKlCneWb2jR4/Wiy++WK/Mjh07VFpa6v35oYce0rFjxzR58mQdPnxYQ4cO1erVq5sMf2cqLCxM3bp1a9VrniwuLi5of7El7i8YBPs9cn/WF+z3GOz3J/nmHuPj41v1elZj+gDYsWNH/eUvf2m2zMmNmDabTbNmzdKsWbNO+3NM3hAKAADQakKz3RMAACCEEQBNKioqSk888YSioqICXRWf4P6sL9jvkfuzvmC/x2C/Pyk07jFQTD8JBAAAAK2LFkAAAIAQQwAEAAAIMQRAAACAEEMABAAACDEEwACZP3++evXqpejoaKWnp2vdunXNll+7dq3S09MVHR2t3r17a+HChX6qacvNnj1bP/7xjxUbG6suXbrohhtu0I4dO5o9Z82aNbLZbA1e3377rZ9qffpmzZrVoJ6ePaibYqXnJ9Xuxd3Y87jvvvsaLW/25/fvf/9b119/vVJSUmSz2fTOO+/Ue98wDM2aNUspKSlq06aNLr/8cn399denvO6yZcs0YMAARUVFacCAAVqxYoWP7qB5zd1fdXW1Hn74YZ133nlq27atUlJSNGHCBO3fv7/Zay5ZsqTRZ1pVVeXju2ncqZ7hL37xiwZ1vfjii095XSs8Q0mNPgubzabnnnuuyWua6RmezveC1X8PrYYAGABLly7V1KlTNXPmTOXk5CgjI0OjRo1SXl5eo+Vzc3N17bXXKiMjQzk5OXr00Uc1ZcoULVu2zM81Pz1r167Vfffdpw0bNigrK0s1NTXKzMxURUXFKc/dsWOHCgoKvK9zzz3XDzVuuR/96Ef16rlt27Ymy1rt+UnSpk2b6t1fVlaWJOlnP/tZs+eZ9flVVFRo0KBBDXYR8nj22Wc1Z84cvfjii9q0aZOSkpJ09dVXq7y8vMlrZmdna9y4cRo/fry++OILjR8/Xrfccos2btzoq9toUnP3V1lZqc8//1yPP/64Pv/8cy1fvlw7d+7U6NGjT3nduLi4es+zoKBA0dHRvriFUzrVM5Ska665pl5dV65c2ew1rfIMJTV4DosXL5bNZtPNN9/c7HXN8gxP53vB6r+HlhOwXYhD2EUXXWRMmjSp3rH+/fsbjzzySKPlH3roIaN///71jt17773GxRdf7LM6tqaioiJDkrF27domy3zyySeGJOPw4cP+q9gZeuKJJ4xBgwaddnmrPz/DMIwHHnjA6NOnj+F2uxt930rPT5KxYsUK789ut9tISkoy/vjHP3qPVVVVGfHx8cbChQubvM4tt9xiXHPNNfWOjRw50rj11ltbvc4tcfL9Neazzz4zJBl79+5tssyrr75qxMfHt27lWklj93jnnXcaY8aMadF1rPwMx4wZY/zkJz9ptoyZn+HJ3wvB9ntoBbQA+pnT6dSWLVu8ext7ZGZmav369Y2ek52d3aD8yJEjtXnzZlVXV/usrq3Fs09zx44dT1l28ODBSk5O1pVXXqlPPvnE11U7Y7t27VJKSop69eqlW2+9Vbt3726yrNWfn9Pp1F/+8hfdddddstlszZa1yvM7UW5urgoLC+s9o6ioKI0YMaLJ30mp6efa3DlmUVpaKpvNpvbt2zdb7ujRo+rRo4e6deumn/70p8rJyfFPBc/QmjVr1KVLF/Xt21f33HOPioqKmi1v1Wd44MABffDBB7r77rtPWdasz/Dk74VQ/D0MNAKgnxUXF8vlcikxMbHe8cTERBUWFjZ6TmFhYaPla2pqVFxc7LO6tgbDMDR9+nRdeumlGjhwYJPlkpOT9fLLL2vZsmVavny5+vXrpyuvvFL//ve//Vjb0zN06FC9/vrr+te//qVXXnlFhYWFGj58uEpKShotb+XnJ0nvvPOOjhw5ol/84hdNlrHS8zuZ5/euJb+TnvNaeo4ZVFVV6ZFHHtHtt9+uuLi4Jsv1799fS5Ys0bvvvqu33npL0dHRuuSSS7Rr1y4/1vb0jRo1Sm+88YY+/vhj/fd//7c2bdqkn/zkJ3I4HE2eY9Vn+Nprryk2NlY33XRTs+XM+gwb+14Itd9DMwgPdAVC1cktKYZhNNu60lj5xo6bzf33368vv/xS//nPf5ot169fP/Xr18/787Bhw5Sfn6/nn39el112ma+r2SKjRo3y/vm8887TsGHD1KdPH7322muaPn16o+dY9flJ0qJFizRq1CilpKQ0WcZKz68pLf2dPNNzAqm6ulq33nqr3G635s+f32zZiy++uN4kiksuuUQXXnih/vd//1fz5s3zdVVbbNy4cd4/Dxw4UEOGDFGPHj30wQcfNBuUrPYMJWnx4sW64447TjmWz6zPsLnvhVD4PTQLWgD9LCEhQXa7vcG/ToqKihr8K8YjKSmp0fLh4eHq1KmTz+p6tn7zm9/o3Xff1SeffKJu3bq1+PyLL7444P9SPR1t27bVeeed12Rdrfr8JGnv3r368MMPNXHixBafa5Xn55nB3ZLfSc95LT0nkKqrq3XLLbcoNzdXWVlZzbb+NSYsLEw//vGPLfFMpdpW6R49ejRbX6s9Q0lat26dduzYcUa/k2Z4hk19L4TK76GZEAD9LDIyUunp6d5ZlR5ZWVkaPnx4o+cMGzasQfnVq1dryJAhioiI8Fldz5RhGLr//vu1fPlyffzxx+rVq9cZXScnJ0fJycmtXLvW53A4tH379ibrarXnd6JXX31VXbp00XXXXdfic63y/Hr16qWkpKR6z8jpdGrt2rVN/k5KTT/X5s4JFE/427Vrlz788MMz+oeHYRjaunWrJZ6pJJWUlCg/P7/Z+lrpGXosWrRI6enpGjRoUIvPDeQzPNX3Qij8HppOIGaehLq3337biIiIMBYtWmR88803xtSpU422bdsae/bsMQzDMB555BFj/Pjx3vK7d+82YmJijGnTphnffPONsWjRIiMiIsL4+9//HqhbaNavf/1rIz4+3lizZo1RUFDgfVVWVnrLnHyP//M//2OsWLHC2Llzp/HVV18ZjzzyiCHJWLZsWSBuoVm//e1vjTVr1hi7d+82NmzYYPz0pz81YmNjg+b5ebhcLqN79+7Gww8/3OA9qz2/8vJyIycnx8jJyTEkGXPmzDFycnK8s2D/+Mc/GvHx8cby5cuNbdu2GbfddpuRnJxslJWVea8xfvz4ejP1P/30U8Nutxt//OMfje3btxt//OMfjfDwcGPDhg2mur/q6mpj9OjRRrdu3YytW7fW+510OBxN3t+sWbOMVatWGd9//72Rk5Nj/PKXvzTCw8ONjRs3+v3+DKP5eywvLzd++9vfGuvXrzdyc3ONTz75xBg2bJjRtWvXoHiGHqWlpUZMTIyxYMGCRq9h5md4Ot8LVv89tBoCYIC89NJLRo8ePYzIyEjjwgsvrLdEyp133mmMGDGiXvk1a9YYgwcPNiIjI42ePXs2+X8AZiCp0derr77qLXPyPT7zzDNGnz59jOjoaKNDhw7GpZdeanzwwQf+r/xpGDdunJGcnGxEREQYKSkpxk033WR8/fXX3vet/vw8/vWvfxmSjB07djR4z2rPz7NMzcmvO++80zCM2iUonnjiCSMpKcmIiooyLrvsMmPbtm31rjFixAhveY+//e1vRr9+/YyIiAijf//+AQu8zd1fbm5uk7+Tn3zyifcaJ9/f1KlTje7duxuRkZFG586djczMTGP9+vX+v7k6zd1jZWWlkZmZaXTu3NmIiIgwunfvbtx5551GXl5evWtY9Rl6/N///Z/Rpk0b48iRI41ew8zP8HS+F6z+e2g1NsOoG40OAACAkMAYQAAAgBBDAAQAAAgxBEAAAIAQQwAEAAAIMQRAAACAEEMABAAACDEEQAAAgBBDAAQAAAgxBEAAlrBmzRrZbDYdOXLE759ts9lks9nUvn17v3zenj17vJ95wQUX+OUzAYQWAiAA07n88ss1derUeseGDx+ugoICxcfHB6ROr776qnbu3OmXz0pNTVVBQYF++9vf+uXzAISe8EBXAABOR2RkpJKSkgL2+e3bt1eXLl388ll2u11JSUlq166dXz4PQOihBRCAqfziF7/Q2rVr9cILL3i7Qffs2dOgC3jJkiVq37693n//ffXr108xMTEaO3asKioq9Nprr6lnz57q0KGDfvOb38jlcnmv73Q69dBDD6lr165q27athg4dqjVr1rS4nl988YWuuOIKxcbGKi4uTunp6dq8ebP3/fXr1+uyyy5TmzZtlJqaqilTpqiiosL7vsPh0EMPPaTU1FRFRUXp3HPP1aJFi874fzcAaAlaAAGYygsvvKCdO3dq4MCBevLJJyVJnTt31p49exqUrays1Lx58/T222+rvLxcN910k2666Sa1b99eK1eu1O7du3XzzTfr0ksv1bhx4yRJv/zlL7Vnzx69/fbbSklJ0YoVK3TNNddo27ZtOvfcc0+7nnfccYcGDx6sBQsWyG63a+vWrYqIiJAkbdu2TSNHjtRTTz2lRYsW6eDBg7r//vt1//3369VXX5UkTZgwQdnZ2Zo3b54GDRqk3NxcFRcXn+X/egBwegiAAEwlPj5ekZGRiomJOWWXb3V1tRYsWKA+ffpIksaOHas///nPOnDggNq1a6cBAwboiiuu0CeffKJx48bp+++/11tvvaUffvhBKSkpkqQHH3xQq1at0quvvqqnn376tOuZl5en3/3ud+rfv78k1QuPzz33nG6//XbvOMZzzz1X8+bN04gRI7RgwQLl5eXpr3/9q7KysnTVVVdJknr37n3anw0AZ4sACMCyYmJivOFPkhITE9WzZ896Y+cSExNVVFQkSfr8889lGIb69u1b7zoOh0OdOnVq0WdPnz5dEydO1J///GddddVV+tnPfuaty5YtW/Tdd9/pjTfe8JY3DENut1u5ubnatm2b7Ha7RowY0eJ7BoDWQAAEYFmeLlcPm83W6DG32y1Jcrvdstvt2rJli+x2e71yLZ1wMWvWLN1+++364IMP9M9//lNPPPGE3n77bd14441yu9269957NWXKlAbnde/eXd99912LPgsAWhsBEIDpREZG1pu40VoGDx4sl8uloqIiZWRknPX1+vbtq759+2ratGm67bbb9Oqrr+rGG2/UhRdeqK+//lrnnHNOo+edd955crvdWrt2rbcLGAD8iVnAAEynZ8+e2rhxo/bs2aPi4mJvC97Z6tu3r+644w5NmDBBy5cvV25urjZt2qRnnnlGK1euPO3rHDt2TPfff7/WrFmjvXv36tNPP9WmTZuUlpYmSXr44YeVnZ2t++67T1u3btWuXbv07rvv6je/+Y33/u68807dddddeuedd5Sbm6s1a9bor3/9a6vcJwCcCgEQgOk8+OCDstvtGjBggDp37qy8vLxWu/arr76qCRMm6Le//a369eun0aNHa+PGjUpNTT3ta9jtdpWUlGjChAnq27evbrnlFo0aNUq///3vJUnnn3++1q5dq127dikjI0ODBw/W448/ruTkZO81FixYoLFjx2ry5Mnq37+/7rnnnnrLxACAL9kMwzACXQkAMDObzaYVK1bohhtu8Ovnzpo1S++88462bt3q188FEPwIgABwCjabTdHR0erUqZN++OEHn39eXl6eBgwYIKfTqQEDBhAAAbQ6JoEAwCns2rVLkhrMHPaVlJQUb+iLioryy2cCCC20AAIAAIQYJoEAAACEGAIgAABAiCEAAgAAhBgCIAAAQIghAAIAAIQYAiAAAECIIQACAACEGAIgAABAiPn//pVhOWzawYwAAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# plot the kernel\n", "plt.plot(bold._stock_time, bold.hemodynamic_response_function.T[::-1]); \n", "plt.ylabel('hrf');\n", "plt.xlabel('time [sec]')\n", "\n", "# plot the maximum\n", "plt.plot(bold._stock_time[bold.hemodynamic_response_function.T[::-1].argmax()], bold.hemodynamic_response_function.T[::-1].max(), 'ko')" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Rising peak is around 0.80 seconds\n" ] } ], "source": [ "print ('Rising peak is around %1.2f seconds' % bold._stock_time[bold.hemodynamic_response_function.T[::-1].argmax()])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Exploring other HRF kernels\n", "---------------------------\n", "\n", " \n", "First, we will create new instances of the Bold monitor.\n", "\n", "Second, the equation defining the hrf kernel has to be changed. To achieve this we will make use of the predefined functions as Equations datatypes \n", "\n", "- In [2] they used a simple gamma function; in [3] a difference of damped oscillators was fitted to functional data from the visual cortex; the mixture of gammas is the function used in softwares like SPM. " ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" }, { "data": { "application/vnd.jupyter.widget-view+json": { "model_id": "518af509bdb54f1fb180563b31998390", "version_major": 2, "version_minor": 0 }, "image/png": "iVBORw0KGgoAAAANSUhEUgAAAoAAAAHgCAYAAAA10dzkAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/YYfK9AAAACXBIWXMAAA9hAAAPYQGoP6dpAADG+0lEQVR4nOzdd3iT5dfA8W+S7kl3gRZaRkvZe4gIKlvAgTJE+SE4EAeCOMHXgaI4AFHByXACThCZspfsslpWaUsLtKWD7pnk/eMhgULpTJqmPZ/rykWa3M/9nJRqD/c4t0qv1+sRQgghhBB1htrSAQghhBBCiOolCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB0jCaAQQgghRB1jY+kArJlOp+PixYu4urqiUqksHY4QQgghykGv15OZmUmDBg1Qq+vmWJgkgFVw8eJFAgMDLR2GEEIIISohLi6OgIAAS4dhEZIAVoGrqyug/AC5ublZOBohhBBClEdGRgaBgYHG3+N1kSSAVWCY9nVzc5MEUAghhLAydXn5Vt2c+BZCCCGEqMMkARRCCCGEqGMkARRCCCGEqGNkDaAQQggjrVZLYWGhpcMQoko0Gg02NjZ1eo1fWSQBFEIIAUBWVhbx8fHo9XpLhyJElTk5OVG/fn3s7OwsHUqNJAmgEEIItFot8fHxODk54ePjIyMnwmrp9XoKCgq4fPky0dHRNG/evM4Wey6NJIBCCCEoLCxEr9fj4+ODo6OjpcMRokocHR2xtbUlNjaWgoICHBwcLB1SjSMpsRBCCCMZ+RO1hYz6lU6+O0IIIYQQdYwkgEIIIWqdPn368MILL1g6jHKJiYlBpVIRHh5u6VBqVCzCvCQBFEIIYbXGjRuHSqW66fHhhx8yc+bMKvWtUqn466+/bno9NzeXN998k9DQUOzt7fH29ubBBx/kxIkTVbpfVRQUFODt7c27775b4vvvv/8+3t7eFBQUVKjfrVu3olKpuHLligmiFDWJJIBCCCGs2sCBA7l06VKxR6dOnXB1db3lNRVNhAzy8/Pp27cvixYtYubMmZw+fZo1a9ag1Wrp1q0b//33n8nvWV6PPPIIS5YsKbGMz+LFi3n00UctVhJFr9dTVFR00+vm/p6IW5MEUAgTyCnMYeeFnSwIX8Bbu9/i/3b9H3MOzGH1udUk5SRZOjwhajV7e3v8/f2LPe6+++5iU8BBQUG8++67jBs3Dnd3d5544gkKCgp49tlnqV+/Pg4ODgQFBfH+++8b2wPcf//9qFQq49fz5s1jz549rF69mhEjRtC4cWO6du3K77//TlhYGBMmTDAmYOPGjeO+++7j/fffp0GDBoSEhACwb98+OnTogIODA507d+bw4cM3faaIiAgGDx6Mi4sLfn5+PProoyQnJxvf79OnD88++yxTp07F29ubfv36MWHCBKKioti+fXuxvnbs2MGZM2eYMGECOp2Od955h4CAAOzt7Wnfvj3r1q0r8fsaExPDnXfeCYCHhwcqlYpx48YBSkL34Ycf0qRJExwdHWnXrh2//fab8VrDyOH69evp3Lkz9vb27Nixo8S4AebMmUObNm1wdnYmMDCQSZMmkZWVVZ6/flFJUgZGiCpIzE7ku+PfsSpqFdmF2SW2UaGiW/1uPNb6MXrU7yG7LIVV0Ov15BZqLXJvR1uNWf47+eijj3jjjTeYMWMGAPPnz2fVqlWsWLGCRo0aERcXR1xcHAD79+/H19eXxYsXM3DgQDQaDQA///wz/fr1o127dsX6VqvVTJkyhTFjxnDkyBHat28PwKZNm3Bzc2Pjxo3o9Xqys7MZMmQId911Fz/++CPR0dFMnjy5WF+XLl2id+/ePPHEE8yZM4fc3FxeeeUVRowYwebNm43tli5dytNPP82uXbvQ6/W0aNGCLl26sHjxYnr37m1st2jRIrp27Urr1q2ZO3cun3zyCV999RUdOnRg0aJFDBs2jBMnTtC8efNicQQGBvL7778zfPhwTp06hZubm7FE0IwZM/jjjz9YuHAhzZs3Z/v27TzyyCP4+PgUu/fLL7/Mxx9/TJMmTahXr16JcRu+f/PnzycoKIjo6GgmTZrEyy+/zIIFCyr1dy3KJgmgEJWg0+tYemIpC48sJLcoF4D6zvXp4t+FANcAbFQ2JOUkcSz5GCdSTvDfpf/479J/dPPvxps93iTQLdDCn0CI0uUWamn5f+stcu+IdwbgZFf+X0+rV6/GxcXF+PWgQYNKbHfXXXcxbdo049fnz5+nefPm3H777ahUKho3bmx8z8fHB4B69erh7+9vfP306dPGUbEbhYWFGdsYEkBnZ2e+/fZb49Tr119/jVarZdGiRTg5OdGqVSvi4+N5+umnjf0sXLiQjh07MmvWLONrixYtIjAwkNOnTxtHEps1a8aHH35YLIbx48czbdo0Pv/8c1xcXMjKyuLXX39lzpw5AHz88ce88sorjBo1CoDZs2ezZcsW5s2bxxdffFGsL41Gg6enJwC+vr7GBC47O5s5c+awefNmevToAUCTJk3YuXMnX331VbEE8J133jGO8hmUFPf1o7XBwcHMnDmTp59+WhJAM5IEUIgKupJ3hVd3vMqui7sAaO/TnqfbP033+t1Rq25eVRGfGc9PkT+x4tQK9ibsZfjfw3m92+vc1+y+ao5ciNrpzjvvZOHChcavnZ2dGT169E3tOnfuXOzrcePG0a9fP0JDQxk4cCBDhgyhf//+lY7DMJp1/ehlmzZtiq27i4yMpF27djg5ORlfMyRRBgcPHmTLli3FklqDqKgoYwJ44+cBGD16NFOnTmX58uVMmDCB5cuXo9frGTVqFBkZGVy8eJGePXsWu6Znz54cOXKk3J8zIiKCvLy8mxK7goICOnToUOy1kmIs6bUtW7Ywa9YsIiIiyMjIoKioiLy8PLKzs3F2di53bKL8JAEUogISsxN5YuMTRKdH46Bx4NWur/JA8wdKna4KcA3gla6v8HDYw7y5+032J+znjV1vcCr1FNM6T0Oj1lTjJxCifBxtNUS8M8Bi964IZ2dnmjVrVq521+vYsSPR0dGsXbuWf//9lxEjRtC3b99ia9luFBISQkRERInvnTx5EqDYVOqN9yzPOcs6nY6hQ4cye/bsm96rX7/+LfsGcHd358EHH2Tx4sVMmDCBxYsX8+CDD+Lm5kZGRgZwc7FvvV5foSl3nU4HwD///EPDhg2LvWdvb1/s65JivPG12NhYBg8ezMSJE5k5cyaenp7s3LmTCRMmUFhYWO64RMVIAihEOSVmJzJu3Tjis+Lxd/bn87s+J9QztNzXB7oG8m3/b/nyyJcsPLKQHyN/JCUvhVm3z8JGLf8pippFpVJVaBrWWrm5uTFy5EhGjhzJgw8+yMCBA0lNTcXT0xNbW1u02uLrIEeNGsX06dM5cuRIsXWAOp2OuXPn0rJly5vWB16vZcuW/PDDD+Tm5hrX0924c7hjx478/vvvBAUFYWNT8b+DCRMm0KdPH1avXs2uXbuMU8lubm40aNCAnTt3cscddxjb7969m65du5bYl2H08vrvQ8uWLbG3t+f8+fPFpnsr68CBAxQVFfHJJ58YT+9YsWJFlfsVpZNdwEKUQ1ZBFpM2TSI+K54AlwCWDlxaoeTPQK1SM6n9JD7q/RE2KhvWRq/l5e0vU6S7uTyCEMK85s6dy7Jlyzh58iSnT5/m119/xd/f37jWLSgoiE2bNpGQkEBaWhoAU6ZMoWvXrgwdOpRff/2V8+fPs3//foYPH05kZCTfffddqaNpDz/8MGq1mgkTJhAREcGaNWv4+OOPi7V55plnSE1NZfTo0ezbt49z586xYcMGxo8ff1NCWpLevXvTrFkzxo4dS7NmzYoley+99BKzZ89m+fLlnDp1ildffZXw8PCbNqIYNG7cGJVKxerVq7l8+TJZWVm4uroybdo0pkyZwtKlS4mKiuLw4cN88cUXLF26tMz4btS0aVOKior47LPPOHfuHD/88ANffvllhfsRFSMJoBBl0Oq0TNs+jdNpp/Fy8OLbAd/SwKVBlfocGDSQuXfOxVZty8bYjXyw74NyTQ0JIUzHxcWF2bNn07lzZ7p06UJMTAxr1qwxjkJ98sknbNy4kcDAQOPaNgcHBzZv3sz//vc/Xn/9dZo1a2bcJfzff//RvXv3Mu/5999/ExERQYcOHZg+ffpNU70NGjRg165daLVaBgwYQOvWrZk8eTLu7u7lPt92/PjxpKWlMX78+GKvP//887z44ou8+OKLtGnThnXr1rFq1aqbdgAbNGzYkLfffptXX30VPz8/nn32WQBmzpzJ//3f//H+++8TFhbGgAED+PvvvwkODi5XfNdr3749c+bMYfbs2bRu3ZqffvrJWI5HmI9KL791Ki0jIwN3d3fS09Nxc3OzdDjCTL468hWfh3+Oo40jiwcsppV3K5P1/W/sv0zdOhU9eiZ3nMzjbR43Wd9CVEReXh7R0dEEBwfj4OBg6XCEqLLSfqbl97eMAApRqoOJB1lwRClDMKP7DJMmfwB9G/flla6vAPDpoU/ZHr+9jCuEEEKIqpMEUIhbyCnM4fUdr6PT6xjWdBjDmg4zy33GhI1hZOhIAF7b8RrxmfFmuY8QQghhIAmgELfw2eHPuJh9kYYuDZnebbpZ7/Vyl5dp692WjIIMpm6dSoFWzscUQghhPpIAClGCY5eP8fPJnwF4o/sbONk6lXFF1dhp7PikzyfUs69HZGokXx6RHXBCCCHMRxJAIW6g0+t4d++76PQ67mlyDz0b9iz7IhPwd/bnzR5vAvDd8e84crn8lfmFEEKIipAEUIgb/HPuHyJSInC2dWZa52llX2BCfRv35Z4m96DT65ixc4bxnGEhhBDClCQBFOI6eUV5zD88H4DH2zyOt6N3tcfwWtfX8HX0JSYjRqaChRBCmIUkgEJc58fIH0nITsDf2Z9Hwh6xSAzu9u680eMNAL4/8T1n085aJA4hhBC1lySAQlyVXZjN4uOLAXi+w/M42FiuGG6fwD70CexDkb6Id/e+K6eECCGEMClJAIW46peTv5BRkEGQWxCDgwdbOhxe6/oaDhoHDiYe5O9zf1s6HCHqvD59+vDCCy+U2iYoKIh58+ZVSzy1ybhx47jvvvvK3T4mJgaVSkV4eLjZYqrtJAEUAqXo8/cnvgfgybZPolFrLBwRNHBpwFPtngJgzoE5ZBdmWzgiIWqecePGoVKpUKlU2Nra4ufnR79+/Vi0aBE6nc7S4ZVpyZIlxvivf9TW4/hulbh9+umnLFmyxCIx1VWSAAoBrDi1grT8NAJdAxkUPMjS4Rj9r+X/CHQNJCUvhSUnllg6HCFqpIEDB3Lp0iViYmJYu3Ytd955J5MnT2bIkCEUFRVZOrwyubm5cenSpWKP2NhYS4dVrdzd3alXr56lw6hTJAEUdV6BtoClEUsBeKLNE9iobSwc0TW2GlumdJoCwJLjS0jMTrRwRELUPPb29vj7+9OwYUM6duzI66+/zsqVK1m7dq1xVOn8+fPce++9uLi44ObmxogRI0hMvPbfU0lTkC+88AJ9+vQp9lpRURHPPvss9erVw8vLixkzZpS6Rjc9PZ0nn3wSX19f3NzcuOuuuzhypHiNT5VKhb+/f7GHn58fAJcvX8bf359Zs2YZ2+/duxc7Ozs2bNgAwFtvvUX79u356quvCAwMxMnJiYceeogrV64Yr9HpdLzzzjsEBARgb29P+/btWbdunfF9w8jcH3/8wZ133omTkxPt2rVjz549xWLdvXs3d9xxB46OjgQGBvL888+TnX1tdiIoKIhZs2Yxfvx4XF1dadSoEV9//bXx/eDgYAA6dOiASqUyfn9v/P6vW7eO22+/3fh9HjJkCFFRUbf8PouKkwRQ1HnrY9aTnJuMr6MvQ5oMsXQ4N+nbqC/tfdqTp83ji/AvLB2OqCv0eijItszDBJue7rrrLtq1a8cff/yBXq/nvvvuIzU1lW3btrFx40aioqIYOXJkhftdunQpNjY27N27l/nz5zN37ly+/fbbEtvq9XruueceEhISWLNmDQcPHqRjx47cfffdpKamlut+Pj4+LFq0iLfeeosDBw6QlZXFI488wqRJk+jfv7+x3dmzZ1mxYgV///0369atIzw8nGeeecb4/qeffsonn3zCxx9/zNGjRxkwYADDhg3jzJkzxe43ffp0pk2bRnh4OCEhIYwePdo4inrs2DEGDBjAAw88wNGjR1m+fDk7d+7k2WefLdbHJ598QufOnTl8+DCTJk3i6aef5uTJkwDs27cPgH///ZdLly7xxx9/lPi5s7OzmTp1Kvv372fTpk2o1Wruv/9+q5jWtxY1Z6hDCAvQ6/X8EPEDAKPDRmOrsbVwRDdTqVS82PlFHl37KH+d/YsxYWMI9Qy1dFiitivMgVkNLHPv1y+CnXOVu2nRogVHjx7l33//5ejRo0RHRxMYGAjADz/8QKtWrdi/fz9dunQpd5+BgYHMnTsXlUpFaGgox44dY+7cuTzxxBM3td2yZQvHjh0jKSkJe3t7AD7++GP++usvfvvtN5588klAGSV0cXEpdu1tt91mHOEbPHgwTzzxBGPGjKFLly44ODjwwQcfFGufl5fH0qVLCQgIAOCzzz7jnnvu4ZNPPsHf35+PP/6YV155hVGjRgEwe/ZstmzZwrx58/jii2v/sJw2bRr33HMPAG+//TatWrXi7NmztGjRgo8++oiHH37YuBGmefPmzJ8/n969e7Nw4ULjusXBgwczadIkAF555RXmzp3L1q1badGiBT4+PgB4eXnh7+9/y+/z8OHDi3393Xff4evrS0REBK1bt77ldaL8ZARQ1GmHkw4TmRqJvcaeB5s/aOlwbqm9b3v6Ne6HHr2MAgpRTnq9HpVKRWRkJIGBgcbkD6Bly5bUq1ePyMjICvXZvXt3VCqV8esePXpw5swZtFrtTW0PHjxIVlYWXl5euLi4GB/R0dHFpjNdXV0JDw8v9li8eHGxvj7++GOKiopYsWIFP/30002bRBo1amRM/gxx6XQ6Tp06RUZGBhcvXqRnz+LHWvbs2fOmz9+2bVvj8/r16wOQlJRk/DxLliwp9lkGDBiATqcjOjq6xD4M09uGPsorKiqKhx9+mCZNmuDm5macOj5//nyF+hG3JiOAok77MfJHAIY2HUo9h3qWDaYMz3Z4lk3nN7ElbgsnUk7QyquVpUMStZmtkzISZ6l7m0BkZCTBwcHGRPBG17+uVqtvWstXWFhYpfvrdDrq16/P1q1bb3rv+g0ParWaZs2aldrXuXPnuHjxIjqdjtjY2GJJVkkMn+v6z33j96Ck74utre1N7Q3Trjqdjqeeeornn3/+pvs1atSoxD4M/VR06nbo0KEEBgbyzTff0KBBA3Q6Ha1bt6agoKBC/YhbkwRQ1FkJ2QlsOr8JwGKnflREE/cmDA4ezOpzq1kYvpDP7/7c0iGJ2kylMsk0rKVs3ryZY8eOMWXKFAICAjh//jxxcXHGUcCIiAjS09MJCwsDlLV2x48fL9ZHeHj4TcnMf//9d9PXzZs3R6O5uXRUx44dSUhIwMbGhqCgoEp/loKCAsaMGcPIkSNp0aIFEyZM4NixY8aNIqCMjF28eJEGDZRp+z179qBWqwkJCcHNzY0GDRqwc+dO7rjjDuM1u3fvpmvXruWOo2PHjpw4caLMZLU0dnZ2ACWOmBqkpKQQGRnJV199Ra9evQDYuXNnpe8pSiZTwKLO+vPMn+j0Orr6d6VpvaaWDqdcJrabiEalYVv8No5dPmbpcISoEfLz80lISODChQscOnSIWbNmce+99zJkyBDGjh1L3759adu2LWPGjOHQoUPs27ePsWPH0rt3bzp37gwom0YOHDjA999/z5kzZ3jzzTdvSggB4uLimDp1KqdOneKXX37hs88+Y/LkySXG1bdvX3r06MF9993H+vXriYmJYffu3cyYMYMDBw4Y2+n1ehISEm56GEbNpk+fTnp6OvPnz+fll18mLCyMCRMmFLuXg4MD//vf/zhy5Ag7duzg+eefZ8SIEcZ1di+99BKzZ89m+fLlnDp1ildffZXw8PBbxl6SV155hT179vDMM88QHh7OmTNnWLVqFc8991y5+/D19cXR0ZF169aRmJhIenr6TW08PDzw8vLi66+/5uzZs2zevJmpU6eW+x6ifCQBFHWSVqflz7N/AjC8+fAyWtccjd0aG3cqf3FE1gIKAUrJkPr16xMUFMTAgQPZsmUL8+fPZ+XKlWg0GlQqFX/99RceHh7ccccd9O3blyZNmrB8+XJjHwMGDOCNN97g5ZdfpkuXLmRmZjJ27Nib7jV27Fhyc3Pp2rUrzzzzDM8995xxM8eNVCoVa9as4Y477mD8+PGEhIQwatQoYmJiio3eZWRkUL9+/ZseSUlJbN26lXnz5vHDDz/g5uaGWq3mhx9+YOfOnSxcuNDYR7NmzXjggQcYPHgw/fv3p3Xr1ixYsMD4/vPPP8+LL77Iiy++SJs2bVi3bh2rVq2iefPm5f4+t23blm3btnHmzBl69epFhw4deOONN4xrBcvDxsaG+fPn89VXX9GgQQPuvffem9qo1WqWLVvGwYMHad26NVOmTOGjjz4q9z1E+aj0cshopWVkZODu7k56ejpubm6WDkdUwM4LO3n636dxt3dn00ObsNfYWzqkcovLjGPon0PR6rX8NPgn2vqUvhZIiPLIy8sjOjqa4ODgWnsKRW311ltv8ddff8mxaDco7Wdafn/LCKCoo/44o9SeGtpkqFUlfwCBroHGUcDvjn1n4WiEEEJYI6tJABcsWGDM4jt16sSOHTtu2fbSpUs8/PDDhIaGolarSzy8+1bnL+bl5ZnxU4iaICU3hS3ntwBwf/P7LRxN5YxvPR4VKjbHbebclXOWDkcIIYSVsYoEcPny5bzwwgtMnz6dw4cP06tXLwYNGnTLekD5+fn4+Pgwffp02rVrd8t+Szp/UaY+ar+/o/6mSF9EW++2hHiEWDqcSmlSrwl3NboLgEXHF1k4GiGEJb311lsy/SsqzCoSwDlz5jBhwgQef/xxwsLCmDdvHoGBgcUWwF4vKCiITz/9lLFjx+Lu7n7Lfks6f1HUfn+f+xuA+5rfZ9lAqmh86/EA/HPuHxKyEywcjRBCCGtS4xPAgoICDh48WOzMQ4D+/fuze/fuKvWdlZVF48aNCQgIYMiQIRw+fLhK/Yma70zaGU6nncZGbUP/xv3LvqAGa+vTlq7+XSnSF7H0xFJLhyOEEMKK1PgEMDk5Ga1WW2zLPICfnx8JCZUf9WjRogVLlixh1apV/PLLLzg4ONCzZ8+bDsa+Xn5+PhkZGcUewrqsiV4DQK+GvXC3v/XosLWY0FqpBfb7md9Jy0uzcDRCCCGsRY1PAA3Kc4RNRXTv3p1HHnmEdu3a0atXL1asWEFISAifffbZLa95//33cXd3Nz6uP1dS1Hw6vY4155QE8J4m91g4GtPo0aAHYZ5h5Bbl8uvpXy0djhBCCCtR4xNAb29vNBrNTaN9SUlJN40KVoVaraZLly6ljgC+9tprpKenGx9xcXEmu78wv/CkcC5mX8TZ1pneAb0tHY5JqFQqHm35KADLTy6nUFu1s0uFEELUDTU+AbSzs6NTp05s3Lix2OsbN27ktttuM9l99Ho94eHhpVY0t7e3x83NrdhDWI9/zv0DQN9GfXGwqT27vQcGDcTb0Zuk3CQ2xG6wdDhCCCGsQI1PAAGmTp3Kt99+y6JFi4iMjGTKlCmcP3+eiRMnAsrI3I1H9oSHhxMeHk5WVhaXL18mPDyciIgI4/tvv/0269ev59y5c4SHhzNhwgTCw8ONfYrapVBbyPrY9QAMbjLYwtGYlq3GllGhowD4MeJH5HAfIUrWp0+fEuvCWquvv/6awMBA1Go18+bNs3Q4wspYRQI4cuRI5s2bxzvvvEP79u3Zvn07a9asoXHjxoBS+PnGmoAdOnSgQ4cOHDx4kJ9//pkOHTowePC1X/xXrlzhySefJCwsjP79+3PhwgW2b99O165dq/WzieqxN2Ev6fnpeDl40c2/m6XDMbmHQh/CTm3H8ZTjHLl8xNLhCFFtxo0bh0qlKvEf75MmTUKlUjFu3DgA/vjjD2bOnFmhvu+77z4TRVo+Wq2WuXPn0rZtWxwcHKhXrx6DBg1i165dxdplZGTw7LPP8sorr3DhwgXjecQFBQV89NFHdOzYEWdnZ9zd3WnXrh0zZszg4sWL1fpZRM1mFQkgKP8hx8TEkJ+fz8GDB7njjjuM7y1ZsoStW7cWa6/X6296xMTEGN+fO3cusbGx5Ofnk5SUxPr16+nRo0c1fRpR3f6N/ReAvo37olFrLByN6Xk6eBo3tvwY+aOFoxGiegUGBrJs2TJyc3ONr+Xl5fHLL7/QqFEj42uenp64urpWe3xarRadTldmO71ez6hRo3jnnXd4/vnniYyMZNu2bQQGBtKnTx/++usvY9vz589TWFjIPffcQ/369XFyciI/P59+/foxa9Ysxo0bx/bt2zl48CAffvghKSkppW5yFHWP1SSAQlSWVqdl8/nNANzd6G4LR2M+Y8LGAEqyeynrkoWjEaL6dOzYkUaNGvHHH38YX/vjjz8IDAykQ4cOxteunwI+efIkTk5O/Pzzz8WucXBw4NixY7z11lssXbqUlStXGo8K3bp1K1u3bkWlUnHlyhXjdeHh4ahUKuMgw5IlS6hXrx6rV6+mZcuW2NvbExsbS0FBAS+//DINGzbE2dmZbt26FRu8WLFiBb/99hvff/89jz/+OMHBwbRr146vv/6aYcOG8fjjj5Odnc2SJUto06YNAE2aNDHee+7cuezcuZPNmzfz/PPP06lTJ5o1a8aAAQNYuHAhs2bNMt5r3bp13H777dSrVw8vLy+GDBlCVFSU8f2YmBhUKhUrVqygV69eODo60qVLF06fPs3+/fvp3LkzLi4uDBw4kMuXLxuvM4yazpo1Cz8/P+rVq8fbb79NUVERL730Ep6engQEBLBoUfETjF555RVCQkJwcnKiSZMmvPHGGxQWXtvUduTIEe68805cXV1xc3OjU6dOHDhwoAI/JeJGkgCKWu9Q0iHS8tNwt3ens39nS4djNqGeoXT174pWr+WXU79YOhxh5fR6PTmFORZ5VGYd62OPPcbixYuNXy9atIjx48ffsn2LFi34+OOPmTRpErGxsVy8eJEnnniCDz74gDZt2jBt2jRGjBjBwIEDjUeFVmTjYU5ODu+//z7ffvstJ06cwNfXl8cee4xdu3axbNkyjh49ykMPPcTAgQON1Sd+/vlnQkJCGDp06E39vfjii6SkpLBx40ZGjhzJv/8qsxr79u3j0qVLBAYG8ssvv9CvX79iSe/1ri+dlp2dzdSpU9m/fz+bNm1CrVZz//333zRS+eabbzJjxgwOHTqEjY0No0eP5uWXX+bTTz9lx44dREVF8X//93/Frtm8eTMXL15k+/btzJkzh7feeoshQ4bg4eHB3r17mThxIhMnTixWScPV1ZUlS5YQERHBp59+yjfffMPcuXON748ZM4aAgAD279/PwYMHefXVV7G1tS3334e4mY2lAxDC3DbGKjvI+wT0wVZdu/+HMSZsDPsS9vHnmT95pv0z2GvsLR2SsFK5Rbl0+9ky62X3PrwXJ1unCl3z6KOP8tprrxlHrgyJ1o3Lg643adIk1qxZw6OPPmqsODF58mQAXFxccHR0JD8/v1LHhBYWFrJgwQLjefRRUVH88ssvxMfH06BBAwCmTZvGunXrWLx4MbNmzeL06dOEhYWV2J/h9dOnT3Pffffh5eUFgI+PjzG+06dP06dPn2LX3X///cYqGm3btjWeoDV8+PBi7b777jt8fX2JiIigdevWxtenTZvGgAEDAJg8eTKjR49m06ZN9OzZE4AJEyawZMmSYn15enoyf/581Go1oaGhfPjhh+Tk5PD6668DysbNDz74gF27djFqlLKBbcaMGcbrg4KCePHFF1m+fDkvv/wyoEx5v/TSS7Ro0QKA5s2b3+I7L8pLEkBRq+n0Ojad3wRAv8b9LByN+fUO6I2/sz8J2QlsiNnA0KY3jyQIURt5e3tzzz33sHTpUvR6Pffccw/e3t5lXrdo0SJCQkJQq9UcP368SgcMXM/Ozo62bdsavz506BB6vZ6QkJBi7fLz843JXHmUFd+N7y9YsIDs7Gzmz5/P9u3bja9HRUXxxhtv8N9//5GcnGwc+Tt//nyxBPD6z2CovWuYfja8lpSUVOyerVq1Qq1WF2tzfZ8ajQYvL69i1/3222/MmzePs2fPkpWVRVFRUbFSa1OnTuXxxx/nhx9+oG/fvjz00EM0bdq01O+FKJ0kgKJWO5Z8jKScJJxsnOjeoLulwzE7jVrDg80f5PPwz1lxaoUkgKLSHG0c2fvwXovduzLGjx/Ps88+C8AXX3xRrmuOHDlCdnY2arWahIQE4+jcrRgSm+unqa9fq2bg6OhYLBnT6XRoNBoOHjyIRlN8I5qLiwsAISEhxcqVXS8yMhIofeSrefPmnDx5sthrhtq2np6exV4fOnQogYGBfPPNNzRo0ACdTkfr1q0pKCgo1u76aVbD57nxtRunjW+cmlWpVCW+Zrjuv//+Y9SoUbz99tsMGDAAd3d3li1bxieffGJs/9Zbb/Hwww/zzz//sHbtWt58802WLVvG/ffff8vvhyidJICiVtsUq4z+9Q7oXWemQ4eHDOfLI18SfjmcU6mnCPUMtXRIwgqpVKoKT8Na2sCBA40JjGHasjSpqamMGzeO6dOnk5CQwJgxYzh06BCOjkoCamdnh1arLXaNj48PoJQf8/DwAJRNIGXp0KEDWq2WpKQkevXqVWKbUaNG8fDDD/P333/ftA7wk08+wcvLi379bj2TMXr0aGbMmMHhw4dvuQ4QICUlhcjISL766itjLDt37izzM5jLrl27aNy4MdOnTze+Fhsbe1O7kJAQQkJCmDJlCqNHj2bx4sWSAFaBbAIRtZZer+ff88pC6bsb197dvzfydvTmrkZ3AbDi1AoLRyNE9dFoNERGRhIZGXnTKFtJJk6cSGBgIDNmzGDOnDno9XqmTZtmfD8oKIijR49y6tQpkpOTKSwspFmzZgQGBvLWW29x+vRp/vnnn2IjVbcSEhLCmDFjGDt2LH/88QfR0dHs37+f2bNns2aNckb5qFGjuP/++/nf//7Hd999R0xMDEePHuWpp55i1apVfPvttzg7O9/yHlOmTKFHjx7cddddfPrppxw6dIjo6GjWr1/P2rVrjd8TDw8PvLy8+Prrrzl79iybN29m6tSpZX4Gc2nWrBnnz59n2bJlREVFMX/+fP7880/j+7m5uTz77LNs3bqV2NhYdu3axf79+2+5XlKUjySAotY6l36OuMw4bNW29GpY8r+4a6uRoSMBWH1uNdmF2RaORojqU95jOr///nvWrFnDDz/8gI2NDU5OTvz00098++23xoTsiSeeIDQ0lM6dO+Pj48OuXbuwtbXll19+4eTJk7Rr147Zs2fz7rvvliu2xYsXM3bsWF588UVCQ0MZNmwYe/fuJTAwEMBYdmX69OnMnTuXFi1a0KtXL2JjY9myZUuZRakdHBzYtGkTr776KosXL+b2228nLCyMF154gZ49exrrCKrVapYtW8bBgwdp3bo1U6ZM4aOPPirXZzCHe++9lylTpvDss8/Svn17du/ezRtvvGF8X6PRkJKSwtixYwkJCWHEiBEMGjSIt99+22Ix1wYqvZwbVWkZGRm4u7uTnp4u5wLXQIuOL2Luwbn0bNiTL/t+aelwqpVer2fYX8OIyYhhRrcZjGwx0tIhiRouLy+P6OhogoODcXCoPWdli7qrtJ9p+f0tI4CiFtser+x46x3Q28KRVD+VSsWI0BEALD+9XM4HFkIIUYwkgKJWSs9PJzwpHIA7Au4ovXEtNazpMBw0DpxJOyPnAwshhChGEkBRK+26sAutXkuzes1o6NLQ0uFYhLu9OwODBwLw6+lfLRyNEEKImkQSQFErbYvfBtTd0T+D4c2Vav8bYjaQWZBp4WiEEELUFJIAilqnSFfErou7gLq5/u967Xza0cS9CXnaPNZGr7V0OEIIIWoISQBFrXP08lHS89Nxt3enrU/bsi+oxVQqFQ80fwCAP8/8WUZrIYQQdYUkgKLWMUz/3t7wdmzUctjNkCZDsFHZcDzlOKdST1k6HCGEEDWAJICi1qnL5V9K4uXoxZ2N7gTgz7MyCiiEEEISQFHLJGQncPbKWdQqNbc1uM3S4dQY9zdTzstcfW41BdqCMloLIYSo7SQBFLXKnot7AGjt3Rp3e3cLR1Nz3NbgNvyc/EjPT2fz+c2WDkcIIYSFSQIoapXdF3cDyOjfDTRqDfc2uxeAP878YeFohDC9hIQEJk+eTLNmzXBwcMDPz4/bb7+dL7/8kpycHEuHJ0SNIyvkRa2h1WnZc0kZAezZoKeFo6l57m92P18f/Zo9l/ZwIetCnS2QLWqfc+fO0bNnT+rVq8esWbNo06YNRUVFnD59mkWLFtGgQQOGDRtm6TCFqFFkBFDUGidTT5Ken46LrQutvVtbOpwaJ8A1gG71uwHw19m/LBuMECY0adIkbGxsOHDgACNGjCAsLIw2bdowfPhw/vnnH4YOHQrAnDlzaNOmDc7OzgQGBjJp0iSysrKM/SxZsoR69eqxevVqQkNDcXJy4sEHHyQ7O5ulS5cSFBSEh4cHzz33HFqt1nhdUFAQ7777LmPHjsXFxYXGjRuzcuVKLl++zL333ouLiwtt2rThwIEDxmtSUlIYPXo0AQEBODk50aZNG3755Zfq+6aJOk8SQFFrGIo/d6vfTcq/3MIDzZSagCvPrkSn11k4GlGT6fV6dDk5Fnno9fpyx5mSksKGDRt45plncHZ2LrGNSqUCQK1WM3/+fI4fP87SpUvZvHkzL7/8crG2OTk5zJ8/n2XLlrFu3Tq2bt3KAw88wJo1a1izZg0//PADX3/9Nb/99lux6+bOnUvPnj05fPgw99xzD48++ihjx47lkUce4dChQzRr1oyxY8caP1teXh6dOnVi9erVHD9+nCeffJJHH32UvXv3VuSvSYhKk9+SotaQ9X9lu7vx3bj+58ql7EscSDhA1/pdLR2SqKH0ubmc6tjJIvcOPXQQlZNTudqePXsWvV5PaGhosde9vb3Jy8sD4JlnnmH27Nm88MILxveDg4OZOXMmTz/9NAsWLDC+XlhYyMKFC2natCkADz74ID/88AOJiYm4uLjQsmVL7rzzTrZs2cLIkSON1w0ePJinnnoKgP/7v/9j4cKFdOnShYceegiAV155hR49epCYmIi/vz8NGzZk2rRpxuufe+451q1bx6+//kq3bt0q8N0SonJkBLAW2x+TygdrT/LX4QvodOX/F7U1yi7M5kjSEUASwNLYa+wZEDwAgJVRKy0cjRCmYxjlM9i3bx/h4eG0atWK/Px8ALZs2UK/fv1o2LAhrq6ujB07lpSUFLKzs43XOTk5GZM/AD8/P4KCgnBxcSn2WlJSUrH7tW3bttj7AG3atLnpNcN1Wq2W9957j7Zt2+Ll5YWLiwsbNmzg/PnzVfo+CFFeMgJYS604EMcrvx/FMJOy+WQS80a2R61WlX6hldqfsJ8ifRGNXBsR4Bpg6XBqtGFNh/Hb6d/YGLuR6d2m42RbvpEWUbeoHB0JPXTQYvcur2bNmqFSqTh58mSx15s0aQKA49W+YmNjGTx4MBMnTmTmzJl4enqyc+dOJkyYQGFhofE6W1vb4rGoVCW+ptMVX0JxfRtDMlrSa4brPvnkE+bOncu8efOM6xJfeOEFCgqkTqeoHpIA1kJxqTm8ufIEej10b+LJwdg0Vh25SLcmnozp1tjS4ZnFrgvK+r8eDXpYOJKar71Pexq5NuJ85nk2nd/E0KZDLR2SqIFUKlW5p2EtycvLi379+vH555/z3HPP3XId4IEDBygqKuKTTz5BrVYmv1asWFGdoRazY8cO7r33Xh555BFASQzPnDlDWFiYxWISdYtMAddCC7dFkVuopVuwJz8/3p1XBrYA4OP1p8jOL7JwdOZhKP8i079lU6lUxqRPpoFFbbBgwQKKioro3Lkzy5cvJzIyklOnTvHjjz9y8uRJNBoNTZs2paioiM8++4xz587xww8/8OWXX1os5mbNmrFx40Z2795NZGQkTz31FAkJCRaLR9Q9kgDWMldyCvj9YDwAU/qFoFar+N9tQTT2ciItp5A/Dl+wcISmdyHrArEZsdiobOjqL5saysOQAO67tI+EbPmlI6xb06ZNOXz4MH379uW1116jXbt2dO7cmc8++4xp06Yxc+ZM2rdvz5w5c5g9ezatW7fmp59+4v3337dYzG+88QYdO3ZkwIAB9OnTB39/f+677z6LxSPqHpW+IvvtRTEZGRm4u7uTnp6Om5ubpcMBYMX+OF7+/Sgt/F1ZO7mXcd3J4l3RvP13BCF+Lqx/4Y6bFkxbs99P/85be96ig28Hvh/0vaXDsRqPrXuMA4kHmNxxMo+3edzS4QgLy8vLIzo6muDgYBwcHCwdjhBVVtrPdE38/V3dZASwlll3QhnNGdymfrEkb3inAOw0ak4nZnEqMdNS4ZnFvoR9AMYix6J8hjVVTkZYeXZlhequCSGEsH6SANYi2flF7DyTDMCg1v7F3nNzsKVPqA8Afx+5WO2xmYterzcmgDL9WzH9GvfDQeNATEYMx5KPWTocIYQQ1UgSwFrk0Pk0CrQ6GtZzpJmvy03vD2nXAID1JxKrOzSzic6IJjk3GXuNPW192pZ9gTBysXPh7sZ3A7AqapWFoxFCCFGdJAGsRfZFpwLQLdizxDV+vZv7oFbB2aQsLlzJre7wzGLfJWX0r71Pe+w19haOxvoYpoHXRq+lQCv1x4QQoq6QBLAW2Xs1Aewa7Fni++5OtrQPrAfA9tOXqyssszJO/8qRZpXSzb8bvk6+ZBRksC1+m6XDEUIIUU0kAawl8ou0hMddAaBbE69btusd4gvUjgRQp9exP2E/IOv/Kkuj1jCkyRBApoGFQjYEidrixtNaRHFyEkgtcTohi4IiHfWcbAnyunX1/l4h3sz99zR7zqWg0+mt+mi4M2lnuJJ/BUcbR1p5t7J0OFbr3qb3suj4InbG7yQ1LxVPh5JHkEXtZmtri0ql4vLly/j4+NSqUlGibtHr9RQUFHD58mXUajV2dnaWDqlGkgSwloi4lA5AqwZupf6Pu01Ddxxs1VzJKeRcchbNfF2rK0STM0z/dvTriK3atozW4laa1GtCS6+WRKREsD5mPaNbjLZ0SMICNBoNAQEBxMfHExMTY+lwhKgyJycnGjVqZDz6TxQnCWAtceJiBgCtGriX2s5Wo6ZdQD32RqdyICatViSAMv1bdUOaDCEiJYJ/zv0jCWAd5uLiQvPmzSksLLR0KEJUiUajwcbGRkaySyEJYC1hSABb1i+7onnnIA8lAYxNY1TXRuYOzSy0Oi0HEw4CykYGUTWDggfx8YGPOXL5CHEZcQS6BVo6JGEhGo0GjUZj6TCEEGYm46K1gFanJ/KSYQSwPAmgssbrYGyaWeMyp5OpJ8kszMTV1pUWni0sHY7V83b0NibS/0T/Y+FohBBCmJskgLXA+dQccgq02NuoaeJzcwHoG3Vs5IFKBdHJ2SRn5VdDhKa3N2EvAJ38O6FRy2iFKQxpquwG/ufcP7ITVAghajlJAGuBqKQsAJr4uKApx65ed0dbmng7A3D8QrpZYzMXWf9nenc3utt4NFxEaoSlwxFCCGFGkgDWAueSlQSwqY9zua9p3VDZLGKNCWChrpBDiYcASQBNydnWmT6BfQBYHbXassEIIYQwK0kAa4Fzl7MByjX9a9DGmABmmCUmc4pIiSC3KJd69vVo7tHc0uHUKoai0Oti1qHVaS0cjRBCCHORBLAWMCSAFRkBNJSLOWaFI4CHEw8D0MG3A2qV/Aib0m0Nb6OefT2Sc5ON6yyFEELUPvLbsxYwTAE38S7/CGCrhspu4QtXcknLLjBLXOZyKEmZ/u3o29HCkdQ+tmpbBgQNAJTNIEIIIWonSQCtXHpOIclZSgIXXIERQDeHa0fGHb9oPaOAOr2Ow0nKCGBHP0kAzcEwDfxv7L/kFuVaOBohhBDmIAmglYu6Ovrn7+aAi33F6nobNoJY0zRwTHoMV/Kv4KBxIMwzzNLh1ErtfNrR0KUhOUU5bIvbZulwhBBCmIEkgFbufEoOAEHeThW+1rAO8OSlTJPGZE6G6d82Pm2w1cj5v+agUqkYHDwYgNXnZDewEELURpIAWrn4NCUBDPSoeAIY6q+sGTydaEUJ4NXyLx18O1g4ktrNMA2868Iu0vKs98QYIYQQJZME0MrFpSprtAIqkQCG+LkCEHU5i0KtzqRxmYthBLCTbycLR1K7NanXhDDPMIr0RWyI2WDpcIQQQpiYJIBWLv6KMgIY4OFY4Wsb1nPExd6GQq2e6ORsU4dmconZiVzIuoBapaatT1tLh1Pr3dPkHkCmgYUQojaSBNDKxacZRgArngCqVCpC/JRp4FMJNX8a+PBlZfdvqEcoLnblL3kjKmdQ8CBUqAi/HE58ZrylwxFCCGFCkgBaMa1Oz8UrVxNAz4pPAQOE+ivTwNawDlDW/1UvXydfutXvBsCa6DUWjkYIIYQpSQJoxZIy8yjU6rFRq/B3c6hUH4Z1gCetYQRQ6v9Vu+ungfV6vYWjEUIIYSqSAFoxw/Rvg3qOaNSqSvUR6mcdI4CZBZmcTjsNyAhgderbqC/2Gnui06OJTI20dDhCCCFMRBJAK2YoAVOZ9X8GIVengM+n5pBTUGSSuMzh6OWj6PQ6AlwC8HXytXQ4dYaLnQu9A3oDsOacTAMLIURtIQmgFYtPrfwGEANvF3u8nO3Q6+FsUpapQjO5g4kHAZn+tQTDNPDa6LVodVoLRyOEEMIUJAG0YheuXJsCroqmPsqO2nOXa24pGOP6P19JAKtbr4a9cLNzIyk3iQOJBywdjhBCCBOwmgRwwYIFBAcH4+DgQKdOndixY8ct2166dImHH36Y0NBQ1Go1L7zwQontfv/9d1q2bIm9vT0tW7bkzz//NFP05pGQkQdAfffKbQAxaOrrDMC5yzVzBLBQW8ix5GMAdPCT9X/VzVZjS7/G/QDZDSyEELWFVSSAy5cv54UXXmD69OkcPnyYXr16MWjQIM6fP19i+/z8fHx8fJg+fTrt2rUrsc2ePXsYOXIkjz76KEeOHOHRRx9lxIgR7N2715wfxaQS0pUE0K+SO4ANmngrI4BRNXQE8ETKCfK1+XjYexDsFmzpcOokwzTwxpiN5GvzLRyNEEKIqrKKBHDOnDlMmDCBxx9/nLCwMObNm0dgYCALFy4ssX1QUBCffvopY8eOxd3dvcQ28+bNo1+/frz22mu0aNGC1157jbvvvpt58+aZ8ZOYVmKGaRJAwwhgVA0dATRM/3bw7YBKVbndzqJqOvl1ws/Jj8zCTHbE33r0XQghhHWo8QlgQUEBBw8epH///sVe79+/P7t37650v3v27LmpzwEDBlSpz+qUX6QlLacQoNI1AA0MI4DRydnodFWv9abX69FmZlKUnIy+sLDK/RnO/63zG0DyMyHrMuRlVPut1So1g4MHAzINLIQQtYGNpQMoS3JyMlqtFj8/v2Kv+/n5kZCQUOl+ExISKtxnfn4++fnXpr8yMqr/F7FBUoYSh52NmnpOtlXqK8DDETuNmvwiHReu5BJYiVNF9DodWVu3kf7nn+QcPIg2NVV5Q63GvmkTnHveTr3hD2DfvHmF+tXpdYQnhQN1sP5ffhac+ANOrYX4A5CddO09Rw9o0BGa9YW2I8DZ2+zh3NPkHhafWMy2uG1kFmTiaudq9nsKIYQwjxo/Amhw49SfXq+v8nRgRft8//33cXd3Nz4CAwOrdP+qMGwA8XdzqPL3wUajprGXkvSdS674OsDcI0eIefAh4idNInPjxmvJH4BOR/6Zs6QuWcK5ocOIe2oi+eeiy913dHo0V/Kv4KBxIMwzrMKxWaWCbNj8HsxtCaueg1Nriid/ALlpELUJ1r8Gc8Jg5bOQccmsYYV4hNCsXjMKdAX8G/uvWe8lhBDCvGp8Aujt7Y1Go7lpZC4pKemmEbyK8Pf3r3Cfr732Gunp6cZHXFxcpe9fVYYNIFWd/jUwlIKJqkAtQL1eT+r33xMz5hHyIiJQu7jg+dhjBC37hdDDh2gRcYJm27bRcN5cXPv1BbWarG3bODdsGJcXLECvLbumnGH6t61PW2w1VRvptApRW+CL7rD9Q8hLB8+mcOcMeHwTvBoHb16B1y7AU9uh/3vKKKC2AA7/AJ91hF3zQaczS2gqlco4DfxP9D9muYcQQojqUeMTQDs7Ozp16sTGjRuLvb5x40Zuu+22Svfbo0ePm/rcsGFDqX3a29vj5uZW7GEphg0gvm72Jumvic/VUjDJ5UsA9Xo9SR9/TOKs96GoCNdBA2m6fh1+r7yMY/v2qB0dUanV2Pr54jZwIAGffUbTNf/g0rs3FBWRPP8zzo+fQNH1o4UlOJx4bQNIrabTwbaP4If7If08uAfCQ0vh2QPQ+yUI6AwObqBSgb0L1G8Htz0LT26B8RsgsBsU5sDGN+CHeyGz8ssjSjO4iZIA7ru0j6ScpDJaCyGEqKlqfAIIMHXqVL799lsWLVpEZGQkU6ZM4fz580ycOBFQRubGjh1b7Jrw8HDCw8PJysri8uXLhIeHExERYXx/8uTJbNiwgdmzZ3Py5Elmz57Nv//+e8uagTVNYoa5RgDLNwV8ef58Ur9bBIDvSy/RcM4cbLy8Sr3GLiiIwK++pP4H76NyciJn715iRo+mIDb2ltcYN4DU5gLQ2iJY+QxseRfQQ8f/wTN7odV9oC7Hf6KNusH49TB0Ptg6QfR2+LYvJEaUfW0FNXRpSAffDujRszZ6rcn7F0IIUT2sIgEcOXIk8+bN45133qF9+/Zs376dNWvW0LhxY0Ap/HxjTcAOHTrQoUMHDh48yM8//0yHDh0YPHiw8f3bbruNZcuWsXjxYtq2bcuSJUtYvnw53bp1q9bPVlkJVzeB+FexCLRBRUYA01f/Q8rCLwHwe2MGXhPGV2gdYr377iP41xXYNmxIYex5YkaNJu/U6ZvaJWYnciHrAmqVmrY+bcvdv1XRFsJvj8GRn0GlgWGfwbD5YOdcsX5UKuj0P2Vq2Ks5pMfBogEQs8vkIRungc/JNLAQQlgrq0gAASZNmkRMTAz5+fkcPHiQO+64w/jekiVL2Lp1a7H2er3+pkdMTEyxNg8++CAnT56koKCAyMhIHnjggWr4JKaRaKIi0AZNro4AJmbkk5VfdMt2+WfOcGn6dAC8Hp+A55gxlbqffdOmBC37BYeWLdGmpXH+scfIP3u2WBtD/b9Qj1Bc7FwqdZ8aTa+H1S9A5CrQ2MGI76Hj2DIvK5V3c5iwARrfDvkZ8NNDELvHJOEaDAgagI3KhsjUSM6lnzNp30IIIaqH1SSAojjjLmATjQC6O9ri7aKsJ4y+xYkg+sJCLr76Gvr8fJx79sRnypQq3dPGx4dGixdh3zIMbWoqsY89RsF1G2tqff2/bbPh8I+gUivr/cKGmKZfJ0945HdocicUZsNPD8KFg6bpG/Bw8OC2hspa2TXnpCagEEJYI0kArZBerycp8+omEFfTbAIBCLpaCiY2teQEMOXbb8k7cQK1uzv1Z81CpdFU+Z4ad3caffcd9iEhaC8nE/fURLRX6ytefwJIrRO5Gra+rzy/5xNoMbj09hVl6wCjf4Hg3lCQBT+PgislH51YGddPA+v1VS8eLoQQonpJAmiFsgu05BUqpT4Mo3am0NhLWXcWm5Jz03sF8RdIvrruz3/669j6+ZrsvjYeHgR+8zU2fn4UnDtH/OTJZGSncSr1FFALN4CkRsNfk5Tn3Z+BzuPNcx9bRxj1E/i1VuoI/jxSKS1jAncG3omjjSPxWfEcSz5mkj6FEEJUH0kArVBKlrIBxNFWg7O96Q5zMYwAxpRQDDrpk4/RFxTg1L07bkOHmuyeBrZ+fgR+uVDZHbznP6Lefh09egJdA/Fx8jH5/SymqAB+HQf56RDQFfq9bd772bvCw8vBxR+SIuDPicrawypysnXirkZ3AbIZRAghrJEkgFYo+WoC6O1qZ9J+G3uXPAKYc+gQmWvXgVqN32uvVvnkkVtxCAuj4Scfg0qFw6qt3H5cV/umf3fOgUvhylFuDy2G6ihu7R6gTAdr7JRTRfZ8YZJuDdPA62LWUaS79cYhIYQQNY8kgFbocmYBAF7Oppv+hetGAFOKjwBe/nQ+APWGP4BDaKhJ73kj1zvvxPtppb7jk+t09MhraNb7VauE47D9I+X54I+VxKy6NOwIA6+uOfz3TYjbV+UuezTogYe9B6l5qey9tLfK/QkhhKg+kgBaoZTsqyOAJlz/B9DYUxkBTMrMJ6dAGdHJOXSInL17wdYW76efNun9bsVt4hMcD1bjUAjNPvoTXXbFzyeucbRFsHIS6Iog9B5oPbz6Y+g8Qbmvrgh+mwB5GVXqzlZty4CgAYBMAwshhLWRBNAKJV8dAfQx8RSwu5MtHk7KlKRhGtiw8aPeffdi26CBSe93K5FXTjF3mIo0VzX62HgSP5hdLfc1q4OL4dIRcHCHIXOUws3VTaWCoZ+CR5By3NyGGVXu8p4m9wCw6fwmcotyq9yfEEKI6iEJoBUyrAE09RQwXL8TOJu8iAiyd+wAjQavJ580+b1u5XDSYTKdVOyY0BFUKq78+iuZmzdX2/1NLicVNr+rPL/rDXD1t1ws9q5w7wJABYeWwpmNZV5SmnY+7Wjo0pCcohy2xW0zTYxCCCHMThJAK2TcBOJi2hFAuH4dYA6pP/0EgNuAAdgFBpr8XrdyKFEpAO3fqy+ejz0GwKUZb1CUnFxtMZjUllmQdwV8W0GnxywdDQT1hO5Xp/NXPQe5aZXuSqVSydFwQghhhSQBtEIpWcoUsLcJi0AbGEYAE+ISyFit/EL3eOQRk9/nVnR6HYcvKwWgO/p2xOeFydiHhqJNTeXSjDesr+hwYgQc+E55PugD0JiubE+V3P1/4NUMMi/Bpneq1JVhGnjnhZ1cybtiguCEEEKYmySAVsicU8BB3soIoNe29ejz83Fo2RLHDu1Nfp9biU6PJj0/HQeNAy28WqC2s6PBhx+isrUla+tW0v/8q9piMYnN74JeB2FDIfiOsttXF1tHZT0gwIHFEF/5o+Ka1mtKC88WFOmL2BC7wUQBCiGEMCdJAK3Q5asJoKk3gYAyAqjW62h/aBMAHmPGmK3uX0kM5/+29WmLrVrZkOIQGoLP5OcBSJw9m6LLl6stniq5cBBO/aOc9XvX/1k6mpsF3Q7tRgN6WP2CslO5ku4JVkYBZRpYCCGsgySAVia/SEtmnvKL2tRlYAAaezrRNjkK7+xU1K5uuN1j4jNqy2BY/9fRr/jxb57jxuHQsiW69HQS3n2vWmOqtM1X42w7CnxCLBvLrfSbCQ71IOEo7P+20t0MDB6IChWHkg5xMeui6eITQghhFpIAWhnD+j8btQp3R9OfIuHpbMfAq9OB+jv7onZwMPk9SnM4SVn/d+MJICobG+rPeg9sbMhcv56MDTV8qjF2N0RtArUN9H7Z0tHcmosP9H1Teb75Xciq3Oiqv7M/nf07A7Ameo2pohNCCGEmkgBaGeP6Pxc7s0zN6nNy6HHhKABJPe42ef+lSchO4ELWBdQqNe182t30vkOLFnhNmKC0nTkTbXp6tcZXIVuvnrrR4VHwDLZsLGXpOA7qt4eCTNg6q9LdGKaBJQEUQoiaTxJAK2PcAWyG6V+AjA0bsSsqIN7Zm9Nejc1yj1sxjP6FeoTibOtcYhvvSU9jFxyM9nIyiR99VJ3hld+FgxC9XRn96/WipaMpm1oNA64mfgeXQFJkpbrp27gvtmpbzqSd4XTaadPFJ4QQwuQkAbQy10YAzZMApq9cCcCmRp2JTa3ekx0M6/86+XW6ZRu1vT3131OKKqf/9js5hw5VS2wVsuvq7to2D0G96qufWCVBPZWdynodbHijUl2427vTq2EvQDaDCCFETScJoJVJy1FGAD2dTL/+r+jyZeXcX2BzYEdiUqr3DN5brf+7kVPHjtR76EEAEt56G31hodljK7eUKIhYpTy/7XnLxlJRfd8GtS2c3QhnN1WqC0NNwLXRa9HpdaaMTgghhAlJAmhl0nKUZMfD2fQlYDI3bQK9nqLQliQ5eRKfVn0jgJkFmcZpw7ISQACfqVPR1KtH/unTpP74k7nDK7/dnwF6aD4A/FpaOpqK8WoKXa8e+bdhBui0Fe7ijoA7cLZ15lL2JWNCL4QQouaRBNDKpGUrI4AeTqZPADPWrwfAuV8/AOLTctDqqufkjfCkcPToCXQNxMfJp8z2Nh4e+E5T1tclf/YZhQkJ5g6xbFlJEP6z8rznZMvGUlm9XwIHd0iKgOO/V/hyBxsH+jbqC8g0sBBC1GSSAFoZwxSwh4mngIvS0sjZtx+A+kMHY6tRUajVk5CRZ9L73IphtKijb8cyWl7j/sADOLZvjy4nh8QPZpsrtPI7uAS0+dCwMzS+zdLRVI6jx7Xkdcss0FZ8et0wDbwhdgOFlbheCCGE+UkCaGXSss0zBZy1aRNotdi3DMOxcSMCPJQj4eJSc0x6n1sxnAByYwHo0qjUavzfehPUajLXrSNrx05zhVc2bSEcWKQ87zYRqvH0FJPrNhGcfSAtGsIrPr3e1b8r3o7epOens+viLjMEKIQQoqokAbQy10YATZsAGgoru/UfAECAhyMA56shASzQFnA8+ThQvvV/13No0QLPRx8BIOHdmejy800eX7mc/AcyLymJU8thlonBVOycr5Wv2fYhFFZsFFij1jAwaCAg08BCCFFTSQJoZYybQEyYAGqzssne8x8Arv37A9DIs/pGACNSIsjX5uPp4EmQW1CFr/d+7jlsfH0pjD1PynffmT7A8jAco9ZpHNiYp0RPter0GLg1hIwLcHBxhS8f0mQIAFvjtpJdWL27yYUQQpRNEkArotfruWIYAXQ23RrA7N27oLAQu6Ag7Jsop1YEVmMCaJj+7eDboVKnm2hcXPB9RTluLeXrbyi8WM1n0SZGQMwOUGmUxKk2sHW4doTdjk8gP6tCl7f0akljt8bkafPYfH6zGQIUQghRFZIAWpHM/CKKru7KNeUIYNb27QC49L7D+JphBLA6poAPJ5av/l9p3AYPxrFzJ/R5edV/Qohh9K/FYHBvWL33Nqf2Y8AjGLIvV3gUUKVSGY+Gk2lgIYSoeSQBtCJXrm4AcbTV4GCrMUmfer2e7G1KAuh8x80JYJyZawHq9DoOX674DuAbqVQq/KdPVzaErF1H9t59pgqxdAXZcHS58rzLE9Vzz+qisYU7pinPd82Hwor9LAxuMhiAPZf2kJybbOrohBBCVIEkgFYk1QwlYPIjIym6fBmVkxNOXboYXw+8ugv4cmY+uQUVLwhcXueunCM9Px1HG0daeLWoUl8OYWHUGzkCgMT33kNfVGSKEEsXsRIKssCzCQTfUXZ7a9N2JLgHQnYSHPqhQpc2dmtMa6/W6PQ61sesN1OAQgghKkMSQCti3AFswhIwhulf5x49UNtd69fdyRY3BxsA4tLMNw1sWP/X1rsttuqqJ7Y+zz+Pxt2d/NOnSVu+vMr9lenwj8qf7cdYd+mXW9HYwu0vKM93zYOiggpdbqgJuObcGtPGJYQQokokAbQi5jgFJGvrNgBc7rh59KqRl/k3ghjP//Wr/Pq/69l4eODzglLI+PL8zyhKSzNJvyVKiYLYXaBSQ7vR5ruPpbV/BFzrKzuCj/xcoUsHBg9ErVJzNPko5zPOmylAIYQQFSUJoBUxlICpZ6Ip4KK0NHKPHAHA5Y5eN71vmAY250aQQ4nXdgCbSr0RI7Bv0QJdejqXP/3UZP3exFAkuendtWvzx41sHeC255XnO+aAtvxT696O3nTz7wbAmmgZBRRCiJpCEkArYigB42miKeCcvftAr8e+eTNs69e/6X1z7wROyE7gYvZF1Co17XzamaxflUaD//TXAbiyfAV5EREm69tIW3Tt3N8Oj5i+/5qm0zhw8oYrsXDs1wpdapgG/ufcP+j11XO2tBBCiNJJAmhFUq9OAdcz0RRw9n97AHDq3qPE96/VAjTPTuCDiQcBaOHZAmdbZ5P27dSlC26DB4NeT8J7s0yfeERtVk7+cPSE0EGm7bsmsnOC255Vnu/4BHS6cl96d6O7sdfYE5MRQ0SqGZJxIYQQFSYJoBW5cnUK2NNEU8A5V0//cO7RvcT3zV0M2rD+ryrlX0rj+/JLqBwdyT14kIzVJq5Fd/jqjti2I2vHyR/l0eVxcHCHlDNwqvzTuS52LvQO6A3IZhAhhKgpJAG0IqbcBVx46RIFsbGgVhcr/3K966eAzTF1ZxgB7OTXyeR9A9j6++P91FMAJH30EbpsEx1JlnsFTl8ta9L+YdP0aQ3sXZUkEJQdwRX4mTBMA6+NXotWZ76yQkIIIcpHEkArYsop4Oz/9gLg0Lo1GlfXEts0rOeISgW5hVpSsitW/qMs6fnpnL1yFjDtBpAbeT42DtvAQIqSkkj+6mvTdHpyNWjzwacF+LcxTZ/WoutToLGD+P1w/r9yX9arYS/c7Ny4nHuZ/Yn7zRigEEKI8pAE0IpcmwKuegKYc3X9n3P3kqd/Aexs1NR3cwBMvxHEMP0b5BaEl6OXSfu+ntreHr/XXgUgdfFiZdSzqgybINo8WDtr/5XG1e9ayZvd88t9ma3Gln6N+wEyDSyEEDWBJIBWQq/XG08CqWoZGL1eT3YZ6/8MzLUO0FD+xVzTv9dzufNOnG+/HX1hIYmz3q9aZ5kJEK0Uz6b1g1UPzhrd9hygUtYBXj5V7ssM08AbYzeSr803U3BCCCHKQxJAK5FfpKOgSNl5WdUEsCA6mqKkJFR2djh2KH36tZGZEsCDScr6v45+5tkAcj2VSoXf66+DrS1Z27aRuWVL5Ts78SfodRDQBTyDTRekNfFuDi2UZK4io4Cd/Drh5+RHVmEW2+O3myk4IYQQ5SEJoJVIz1WmfzVqFS72NlXqK/s/ZfTPsUMH1A4OpbYNNEMtwNyiXCKSlXIg5toBfCP7JsF4/W8sAInvf4Auv5IjUMbp3xEmisxK9VROW+HIcsi4VK5L1Co1g4MHAzINLIQQliYJoJUwJIBuDjaoqrjuLPfAAQCcunUts20jM9QCPHb5GEX6InydfGnoUn0naHhNfBobX18Kz58ndfHiineQEgUXDoJKA63uM3l8ViWwKwR2B10h7P2y3JcZpoG3xW8jPT/dXNEJIYQogySAViLDkAA6Vn39X84BZfrVqVPnMtubYwTQMP3bybdTlZPZitC4OOP78ssAJH/5FYUXL1asg+O/K3826QMuvqYNzhoZRgEPLIK8jHJdEuIRQohHCIW6QtZFrzNjcEIIIUojCaCVMIwAulcxASy8cIGipCSwtcWxbdklTAI9HQG4lJ5Lobb8pz+U5nCisgO4g5/5yr/cits9g3Hq3Bl9Xh6Jsz+s2MXHflP+bPOQ6QOzRiEDwTsE8jPg4JJyXaJSqRjWdBgAK6NWmjE4IYQQpZEE0EqYKgHMuTr969iyJWpHxzLb+7jY42CrRqeHi1eqPg1cpCviyOUjQPWt/7ueSqXC740ZoFaTuX492Xv2lO/CpJOQfEqpgddisHmDtBZqNfS4ejzcvq+V85HL4Z4m96BRaTiWfIxz6efMGKAQQohbkQTQSlxbA1i1BDD3oFJ+xbFT+cqvqFSqYieCVNWp1FPkFOXgaudKc4/mVe6vMhxCQ/F4WDnBI+Hd99AXFpZ9UeQq5c8mdyrHoQlF2xHg5AXpcde+R2XwdvTm9oa3A7DqbPmuEUIIYVqSAFqJjFxldKWqawBzDikJoFPn8tffC/QwXQJoOP6tg28H1CrL/fj5PP8cGk9PCqKiSP3xp7IviLg6XdnyXvMGZm1sHaHzBOX5fwvLfdm9zZTv499Rf8vRcEIIYQGSAFoJU0wBF6WlURAVBVBm/b/rmXIjyKEkJQG1xPTv9TRubvi+OBWA5M8/pzAp6daNU6Ig8TiobSB0UDVFaEW6PH71eLh9EH+gXJf0DuiNm50bSblJ7L2018wBCiGEuJEkgFbCOAXsWPkagLlXR//smjXFxsOj3NcZpoDjq1gKRq/XG4+Aq44TQMrifv/9OLRtiy47m8uffHLrhobRv+A7wMmzeoKzJq5+105F2fNFuS6x09gZawL+FfWXmQITQghxK2UmgA888AAZGUqJh++//578yhbQFVWSkVf1EUBj+ZeOFUu+TDUCGJ0RTWpeKvYae1p5tapSX6agUqvxf2MGqFSkr1xlnB6/iWFtW9iw6gvO2vSYpPwZsRKuxJXrEsM08Obzm8ksyDRXZEIIIUpQZgK4evVqsrOzAXjsscdIT5firZZgiingnENXE8AKrP8DTLYJxHD+bxvvNthqqraW0VQc27Sh3oPDAUiY+S567Q3r0dJi4eJhUKmhxRALRGgl/NtAUC/Qa5UdweXQyqsVTd2bkq/NZ0PMBjMHKIQQ4nplzie2aNGC1157jTvvvBO9Xs+KFStwc3Mrse3YsWNNHqBQZFRxF7AuN5e8E8rxa44VHgFUysWk5xaSnltY6STUkABWx/m/FeEzZQoZ6zeQHxlJ2rJleI4Zc+3NyL+VPxv3BBcfywRoLXo8AzE74OBS6P0K2LuU2lylUjGs2TDmHpzLyqiVDA8ZXk2BCiGEKDMB/PLLL5k6dSr//PMPKpWKGTNmlHh6g0qlkgTQjKo6Aph34gQUFWHj44NtwwYVutbJzgZvF3uSs/KJS83BvWHFy6Do9XoOJCobBDr7lX0CSXWy8fTEZ/LzJM58l8tz5+Harx+2vldP+jBM/8ru37I1HwCeTSE1CsJ/hm5PlnnJkCZD+PTQpxxOOsz5jPM0cmtUDYEKIYQocwr4tttu47///uPy5cvo9XpOnz5NWlraTY/U1NTqiLfOyqhiAph77DgADm3bVur4tUZXRwHjKjkNHJ8Vz6XsS9iobWjn065SfZiTx6hROLRujS4ri6QPPlBezLgIcVd3qMr0b9nUauj+tPJ870LQlX1yjK+TLz0a9ADkZBAhhKhO5d4FXFRUxNixY2UTiAUUanVkFyhr0ypbBzDv2DEAHNu0rtT1VV0HeCBBGf1r490GJ1unSvVhTiqNBv+33wK1mow1a8nasRNOrVHeDOgKbvUtGp/VaDdaKZSdeg5Ol++s3/ua3gcoNQF1etMcNyiEEKJ05U4AbWxs+P3339HeuEhemJ1h9A/AzaFyZWByj18dAWxd9vm/JanqTuD9CfuBmjf9ez3HVq3wfPQRABLeeQfd8X+UN1rcY8GorIy9C3Qapzz/b0G5Lrmz0Z242rpyKfuS8edECCGEeVWoDuDdd9/N1q1bzRSKuJWMPOUUEBd7G2w0FS/dqL1yhcLz5wFwbF258itVSQD1ej37E5Vf7F38u1Tq/tXF+7nnsfH3pzAujuTVV8vChMrZvxXS9UlQaZQNIZeOltncXmPPgOABAKyKkqPhhBCiOlQomxg0aBCvvfYa06ZN45dffmHVqlXFHsI8rp0DXNnRvxMA2DZqhKZevUr1YZgCrswawPiseBKyE2rs+r/raVyc8Z8xHYCUCEfyCQJvy5xZbLXcA6DVfcrzco4C3ttU2WSzMXYj2YXZZgpMCCGEQYUyiqefVhZ4z5kz56b3VCqVTA+bybVTQCq5/u/41fV/rSu3/g+uJYAXruSi1enRqMu/kaSmr/+7kWvfvriEeZEVmcKlfa401usrtXGmTuv+DBz/HY79Bn3fAlf/Upu382lHkFsQMRkxrI9ZzwPNH6ieOIUQoo6q0AigTqe75UOSP/Mx3Q7gyq3/A/Bzc8BOo6ZQqychI69C11rD+r9itEX4t76AykZH7rkU0v/4w9IRWZ+AThDYDXSFsP/bMpurVCrub34/AH+cke+3EEKYW4XnFDdt2sSmTZtISkpCd12ZB5VKxXfffWfS4ISiyiOAxh3AlU8ANWoVDT0ciU7O5nxKDg3rOZbrOr1ez76EfUDNX/9nFL8PW00qPh28SdpvR+JHH+PSpw823t6Wjsy6dJ+klNHZ/x30ehFsS/+ZGdZ0GJ8d+owjl49wNu0szTyaVVOgQghR91RoBPDtt9+mf//+bNq0ieTk5GqtA7hgwQKCg4NxcHCgU6dO7Nixo9T227Zto1OnTjg4ONCkSRO+/PLLYu8vWbIElUp10yMvr2KjW9WhKkWgCxOTKEpKArUah7CwKsURWIl1gPGZ8STmJFrF+j+jU2sB8Bx2F/Ytw9Clp5PwzkwLB2WFWgwB90aQmwpHlpXZ3NvRmzsC7gDgj7MyCiiEEOZUoQTwyy+/ZMmSJezdu5e//vqLP//8s9jDXJYvX84LL7zA9OnTOXz4ML169WLQoEGcv7qz9UbR0dEMHjyYXr16cfjwYV5//XWef/55fv/992Lt3NzcuHTpUrGHg4OD2T5HZVVlCtiw/s++WTPUTlVbf2coBl2RncCG3b/Wsv4PMCaAqpaDafDee2BjQ+aGDWSsW2/hwKyMxga6T1Se/7cQ9PoyLzEcB/d31N8UaAvMGZ0QQtRpFUoACwoKuO2228wVyy3NmTOHCRMm8PjjjxMWFsa8efMIDAxk4cKFJbb/8ssvadSoEfPmzSMsLIzHH3+c8ePH8/HHHxdrp1Kp8Pf3L/aoiTLyKp8A5h5VEkCHShaAvl5likEb1v9ZzfRv8hlIOQNqW2h6Nw5hYXg/+QQACTNnUpSWZuEArUyHR8HOFZJPwdlNZTa/rcFt+Dr5ciX/ClvitlRDgEIIUTdVKAF8/PHH+fnnn80VS4kKCgo4ePAg/fv3L/Z6//792b17d4nX7Nmz56b2AwYM4MCBAxQWXiuqnJWVRePGjQkICGDIkCEcPny41Fjy8/PJyMgo9qgOVSkDY4r1fwYVTQD1er31JYBXR/8I7gUObgB4TZyIffNmaFNSSJz1vgWDs0IObtDxUeX5f1+U2dxGbWMsCSObQYQQwnzKzCimTp1qfK7T6fj666/5999/adu2Lba2xUekSioPU1XJyclotVr8/PyKve7n50dCQkKJ1yQkJJTYvqioiOTkZOrXr0+LFi1YsmQJbdq0ISMjg08//ZSePXty5MgRmjcvue7b+++/z9tvv22aD1YBGblKIeiKbgLR6/XknlBqAFb2BJDrBXgoCWB8WvkSQGte/0fIIONLajs76r/3HjGjRpPx99+4DRqE6113WihAK9TtKdj7JURthsQI8GtZavP7m9/PN8e+Yc/FPVzMukgDlwbVFKgQQtQdZY4AHj582Pg4cuQI7du3R61Wc/z48WLvhYeHmzXQG+uw6cuozVZS++tf7969O4888gjt2rWjV69erFixgpCQED777LNb9vnaa6+Rnp5ufMTFxVX241RIZr6SALo6VCwBLDx/Hl16OipbWxxCql7MuJGXkgAmZxWQfTWm0vyX8B8Abb3b4mhTvl3DFpWTCnFKzIQOLPaWY9u2eD42DoCEN99EW02jv7WCR9C14/TKURg60DWQbvW7oUfPX2f/MmtoQghRV5U5Arhli2XX4Xh7e6PRaG4a7UtKSrpplM/A39+/xPY2NjZ4eXmVeI1araZLly6cOXPmlrHY29tjb29fwU9QdZlX1wC6VnAK2FD/zz4sDJWdXZXjcHOwpZ6TLVdyColLy6GFv1up7fdc3ANA9wbdq3zvahG1GfQ68G0F9Rrd9LbPc8+RtWkzBTExJL7/AQ3en2WBIK1Uj2ch8m84ugLufhNcfEpt/kCzB9h7aS9/nv2Tp9o+hUatqaZAhRCibqj4wbLVzM7Ojk6dOrFx48Zir2/cuPGWG1J69OhxU/sNGzbQuXPnm6atDfR6PeHh4dSvX980gZtQ5nVnAVeEcf1fFU4AuZFxHWBK6dPAWp3WWP+vR/0eJru/WZ3ZoPzZvG+Jb6sdHKg/6z1QqUj/808y//23GoOzcoHdoEFH0ObDgUVlNr+78d242bmRkJ3Ankt7qiFAIYSoW2p8AgjKOsRvv/2WRYsWERkZyZQpUzh//jwTJyolJl577TXGjh1rbD9x4kRiY2OZOnUqkZGRLFq0iO+++45p06YZ27z99tusX7+ec+fOER4ezoQJEwgPDzf2WZNkXU0A3So4BZx7/OoJICbYAGIQWM6NICfTTpKen46zrTOtvFuZ7P5mo9Nd26XarN8tmzl17Ijn+McAuPTG/1F0+XJ1RGf9VCro8YzyfP83UFh6vU17jT1Dmw4FZDOIEEKYg1UkgCNHjmTevHm88847tG/fnu3bt7NmzRoaN24MwKVLl4rVBAwODmbNmjVs3bqV9u3bM3PmTObPn8/w4cONba5cucKTTz5JWFgY/fv358KFC2zfvp2uXbtW++crTaFWR26hcsyeSwWmgPVFReRFRADgaIISMAaBHuUrBm2Y/u3i3wVbdeVOMKlWlw5DTrJSsqRR6VPWPpMnY9+iBdq0NC7OmGFcXyrK0PJecGsI2Zfh+G9lNr+/mXI03Ja4LaTkppg7OiGEqFOsIgEEmDRpEjExMeTn53Pw4EHuuOMO43tLlixh69atxdr37t2bQ4cOkZ+fT3R09E0je3PnziU2Npb8/HySkpJYv349PXrUvKnK6zdbVGQNYH7UOfS5uaidnbELDjZZPIYp4Li03FLb/XdJ2UzRvb6VrP87c3XJQNM+oCk9YVXb2dHgw9mo7OzI3radK8tXmD++2kBjC12fVJ7vWVBmYehQz1Bae7WmSFfE31F/V0OAQghRd1hNAlhXGdb/OdiqsdWU/6/LcAKIQ6tWqDSmW0BfnlqAeUV5HE5Uair2aFDzkuoSGRLA5v1Lb3eVQ0gIPlOnAJA4ezb50dHmiqx26fQ/sHWCpBMQva3M5g+EPADA72d+l5FWIYQwIUkAazjDKSAu9hVc/3fMdCeAXK/RdecB63Ql/0I+lHSIAl0Bvk6+BLuZbvTRbLJT4MJB5XmzkjeAlMRz7FicundHn5vLxVdeRX9dkXFxC44e0H6M8nxP2SVhBgcPxsnGiZiMGOOmIiGEEFUnCWANd20DSAV3AB813Qkg16tfzwGNWkV+kY7LWfkltjFM//ao36PUWo01RtQmQA9+rcGt/EWHVWo1Dd6fhdrNjbyjR7n8edknXQig+9OACs6sh8unS23qbOvMkCZDAFh+ank1BCeEEHWDJIA1nLEETAUSQF1+PnmnlV+spjgB5Hq2GjUN6jkAt54G/u/i1fV/1lL/zzj9e+vdv7diW78+9d9+C4CUr78ma+cuEwZWS3k1hZCrhbb3lnye9/VGhI4AYMv5LVzOkV3XQghhCpIA1nBZxlNAKrAB5ORJKCpC4+GBbUPTH6Nl2AlcUi3AtLw0IlMjASvZAKLTXh0BpNTyL6VxGzSIeiNHgl7PxZdfpjApyYQB1lKGkjDhvygnsJQi1DOU9j7tKdIXSUkYIYQwEUkAazjjKSAVWANoOAHEoU1rs0zBlrYRZO+lvQA092iOt6O3ye9tchcPQ04K2LtDYOVLAPm99ir2oaFoU1O5+NLL6LVaEwZZCwXdDv5toCgXDi4us7lhFPC3M7+h1cn3VgghqkoSwBouoxJTwNdOADHt9K9BoLEUzM0J4M4LOwFrOv2j/OVfSqN2cKDh3LmonJzI2buX5AVlT23WaSoVdL86Crj3aygqKLV5/6D+uNu7k5CdwI4LO6ohQCGEqN0kAazhKjMFfO0EENPuADa4fifw9XR6nTEBvCPgjpuuq5HOXk0AKzn9ez37JsHG9YDJCxaQ/d9/Ve6zVms9HFz8ICsBTvxZalN7jT33Nb0PgBWnpO6iEEJUlSSANdy1KeDyJYDarGwKzp0DTL8D2OBWU8CRqZGk5KXgZONER9+OZrm3SWUnw4VDyvMKlH8pjfvQobgPfwD0ei5MmUrhxYsm6bdWsrGDrk8oz//7oszC0A+FPgQoo8zxmfHmjk4IIWo1SQBrOEMZGNdyngOcd+IE6PXY1K+Pjbd51uAZpoATM/LJK7y2HmtnvDL6171+d2yrMJ1abc5eLf/i3wbc6pusW/8ZM7BvGYY2LY34555Hl1f6ubd1WqfxYOMIl46UWRi6sVtjutfvjh49v5/5vZoCFEKI2kkSwBouM69iU8CGE0DMNfoH4OFki8vVEcn469YBGtZm9QroZbZ7m9TZf5U/TTD9ez21oyOBn32Gpl498k6cIOHNt+QUi1tx9oKOjyrPd84rs/nI0JEA/HHmDwq1UnhbCCEqSxLAGq6idQCv3wFsLiqVyjgKaJgGvpJ3haOXjwJwe8PbzXZvk9Hp4NxW5Xmzu03evW3DhjScNxfUatJXriTtp59Nfo9ao8ezoNLAuS3KruxS9A7sjY+jD6l5qWw6v6maAhRCiNpHEsAaLjO/glPAx8w/AgjQyNMRgLjUXAB2X9yNHj3NPZrj7+xv1nubRNIJyE4CW2cIqHz5l9I4d++O70svAZD4wQfk7N9vlvtYPY/GyoYQgF2fltrUVm3L8BCl7S8nfzF3ZEIIUWtJAljDGTeBlGMEsCg1lcILFwBwaNXKrHHduBHEOP3b0Eqmf6M2K38G91I2I5iJ57j/4XbPPVBURPxzz1MQG2u2e1m1npOVPyNWQkpUqU0fbP4gNiobDiUd4mTqyWoITgghah9JAGs4YxmYcuwCNoz+2QUHo3F1NWtc108B6/Q6dl1QjkCziulfuJYANrnTrLdRqVTUf3cmDq1bo71yhbinJqK9csWs97RK/q2heX/Q62D3Z6U29XP2o29jZdf2z5EytS6EEJUhCWANptfrr9sEUvYUcHWs/zMIvK4W4LHkY6Tlp+Fi60J73/Zmv3eVFeZC7B7ledO7zH47taMjAQu+wKZ+fQpiYoh/7nn0BaUXPq6Ter6g/Bn+M2Qmltp0TNgYAP459w9peWlmDkwIIWofSQBrsNxCLVqdsnu0PJtAzH0CyPWunwLeHKuMpt3e8HZs1VZQ/iV2N2jzwS0AvJtXyy1tfX0J/PJL1M7O5Ozfz6U3/k92Bt+o8W3KekxtPuwt/SSVdj7taOnVkgJdgZSEEUKISpAEsAYz1ABUq8DZTlNqW71eb/YTQK4X4OGIWgU5BVo2xiq7Me9qZP7RNJMwTP827aMcSVZNHEJDaDhvHmg0pK9cSfKCBdV2b6ugUsHtLyjP9y+CvIxSmqqMo4DLTi6jUCclYYQQoiIkAazBjOcA29ugKiNRKbp0CW1KCtjY4BAWZvbY7G00NKjniNouibisWGzUNla0/m+L8mc1TP/eyKXX7fi/8QYAyZ99TtqyZdUeQ40WMgi8QyE/HQ4uLrXpwKCBeDp4kpiTyObzm6spQCGEqB0kAazBsipQAsaw/s++eXPUDg5mjcsg2NsZG9cIALrV74arnXk3nphEZoJSAgYVBPexSAgeo0bi9fREABLefoeMNWssEkeNpFZf2xG85wtlveYt2GnseChEOR5ONoMIIUTFSAJYg1WkBIzxBJDW5p/+NWjs5YSN6wkA7gq0kulfQ/HnBu2VUygsxOf556k3epRyZvArr5K1Y6fFYqlx2jwE7o0gKxEOLi216YjQEcaSMBEpEdUUoBBCWD9JAGuwzOumgMti3AHc1vwbQAy83fPQOMYBcGegecupmEw1lX8pi0qlwn/GDNwGD4LCQuKff56cw6WfglFn2NhBrynK813zoPDWZyn7OvnSL0g5yk9GAYUQovwkAazBssp5DrBepyPv6gYQc58Acr0M9REA7IqC8XHyqbb7Vppeb9H1fzdSaTQ0+OADnG+/HX1uLnFPPEnu0aOWDqtmaP+Isks78xIc+r7UpobNIGui15CSm1Id0QkhhNWTBLAGyzBOAZe+BrAgJhZdVhYqBwfsmzWrjtAAOJ2p1NLLSw+zjpImidcd/xZonuPfKkplZ0fA/E9x7NwJXVYW58dPkCQQio8C7pwLRfm3bNrWuy2tvVpTqCtkxekV1RSgEEJYN0kAazDDJpCyagAa1v85hIWhsil7utgUUvNSOZ56EICctJZczrz1L+gawzD9G9QTbOwtG8t11E5ONPrqK0kCb9ThUXBrCJkX4fAPt2ymUql4tOWjgFISJl9rBT+LQghhYZIA1mDGKeAy1gBW5wkgBv/G/otWr0VTGIi+0Jvo5Oxqu3elGev/WX7690ZqZ+ebk8AjRywdlmXZ2MPtV0cBd5Q+CtgvqB/1neuTmpfK31F/V1OAQghhvSQBrMGyC5QE0MmujBHAq6NF1bn+b230WgD81N0BiE3JqbZ7V0phrnICCNTIBBBKSAIfG0/2nj2WDsuyOjwKrvUhIx7Cf7plM1u1LY+EPQLA0hNL0el11RWhEEJYJUkAa7CsfC0Azva3PgVEX1hIXmQkUH0JYFJOEgcTlenf1vXuACA6pYaPAJ7fc/X4t4bgHWLpaG7JkAQ69eiOLieHuCefImP9BkuHZTm2DteNAs4pdRRweMhwXG1dicmIYXv89moKUFSZXq88hBDVqnoWjIlKyc4vuwxM3qnT6AsKULu7Y9u4cbXEtSFmA3r0tPdpT0u3xvxOBDE1fQr4+vIv1Xj8W2WonZ0J/OorLr44jcyNG7kwZQrat97EY8QIS4dmGR3Hws55kB4HBxZD94klNnO2deah0IdYdHwRS04soU9gn2oNU5RAp4XLJ5UNWInHIfmMsrM7MxFy00BXCLoiUNuAvSvYu4FbA/AIAo9g8G8NDTuDq5+lP4kQtY4kgDWYIQF0Li0BPHZt+res4+JMZW2MMv07MHgg9VVOAMTU9ClgY/kX66hXqLazo+G8uSS89TZXfv2VhP97E21qKl5PPVVtf881hq0j9HkF/p4M2z+CDmOUZKEED7d4mO8jvudg4kGOXT5GG5/qWxYhrkqPh5NrIHobxOyEvCtlX6MrUhLC3DS4EquM2F/PPRCa9Ibm/aFJH3BwN0fkQtQpkgDWYIY1gKWNAOYevXoCSDUVgI7LjOPo5aOoUNG/cX8ysx0BiE3JRq/X18zkJDNRGX1AZfEC0BWh0mjwf+dtNJ6epHz1FZfnfUpBdAz+M99BbWdn6fCqV/tHYPdnkHIW9ixQEsIS+Dn7MTh4MKuiVrE0Yikf9/64mgOto7JT4NivcOIPiNtb/D07F/BvA36twKeFsgzD1Q8cPZWNPmpbZSQwLwPy0pX1nqnRkBIFl8IhKVIZ/T38o/JQ20CzvtB2JIQOVpYJCCEqTBLAGizbuAawlATw6gigQzWt/1sVtQqAHg164OPkg7udDrUKcgq0JGXm4+dWA/9nbDj+rX5bix7/VhkqlQrfKS9gW9+fhJnvkr5yJQXx8QR8/hk2Hh6WDq/6aGzgrhnw6zglEewyAZy9S2z6v1b/Y1XUKjbGbiQuM45A18DqjbUuuXAQ9n0Dx/9Q1tgCoIJG3aF5PwjuDfXbK39/ZXFrcPVJt+Kv52dC3D44uwnObICUM3B6nfKwd4f2o6Hrk+DV1IQfTIjaTzaB1GBZxingkjeBaLOyKIg6B1TPBhCdXseqs0oCeF+z+wCws1ET4HF1GrimrgOsweVfystj1CgCv/oKtYsLuQcPEjNiJPlRUZYOq3qF3Qv120FBprIh5BZCPELo2aAnOr2OHyN+rMYA6wjDiTqLBsE3d8GRX5Tkz78tDHgfpkbA+HXQ60UI6Fy+5K809q7Q7G4YOAueOwDP7FP6dg+E/HTY+yV81gl+HnVtp78QokySANZgZW0CyTt+AvR6bBs0wMa75NEQU9qXsI+L2RdxtXXlrkbXkqkgb2cAYmriTmC9vlYkgAAut/ckaNkv2AYEUBgXR8xDI8hYu9bSYVUftRruflN5vv8buBJ3y6b/a/U/AP48+yepeanVEV3dELUFFg2AH+6D87tBY6dMxU74F57aDj0mXTeSZyY+oXD3/8Hko/Don9B8AKCH02th8SD4/l5lxFAIUSpJAGsonU5PTkHpU8DG6d92baslpr/O/gXAoOBB2GuunaQR7KWMAEYn18CNIMbj35wgsFvZ7Ws4+2bNCFqxHKeuXdHl5HBhylQS338ffWGhpUOrHk3vgqBeoC2Aze/esln3+t1p6dWS3KJcGQU0hcun4acRSuIXtxc09tBtIkw+Ag98DYFdqn93vVqt/DyMWQHPHoBOjynrCc9the/6wY/DITGiemMSwopIAlhDGTaAADjfohD0tQLQ5k8AMwsy2RS7Cbg2/WvQ2EsZAYytiSOA567u/m1cs45/qwobT08aLfoOryceByB16ffE/m8chYmJFo6sGqhU0O8d5fnRZRB/8BbNVDzR5glAOR4usyCzuiKsXXLTYO2rsLAHnFmvbMDo+hS8cBQGzTb/aF95eTeHofPguYNK2SCVBs7+C1/eDv9MgxwZBRbiRpIA1lCGDSBqFTjYlvzXVJ07gFefW02eNo+m7k1p7V38yLngq1PANfI4OOP0r/Xs/i0PlY0Nvi++SMDnnynrAg8dIvre+8jYUAeKRjfsCO0eVp6ve/WWRYTvanQXTd2bklmYybKTy6oxwFoiYiV83hX2LlTKtIQMgkl7YfCH4Opv6ehK5tEYhn2mrBUMGwZ6rbJcYH4HZbOKTk6IEcJAEsAayjAC6GxvU2JplcLERIoSE0GtxqFlS7PGotfrjb9AR4SOuCme6xNAna4GVfQvzLu2KNyKyr9UhGvfvgT//hv2LcPQXrnChecnc3H6dLRZNTAZN6W7/w9snSF+Hxz/vcQmapWaCW0mAPBDxA/kFNbAJQo1UcYlWDYGVoxVlk94NVfW2j28DLybWTq68vFsAiN/gP/9Db6tlFqEa6Yp6xeTTlo6OiFqBEkAa6iyNoDkXp3+tW/eHLWTk1lj2Zewj3Pp53CycWJY02E3vR/o6YSdRk1+kY4LV3LNGkuFxO2Fojxw8QffMEtHYzZ2jRsTvGwZXk88ASoV6b//QfT995Nz6LClQzMft/rQ6+oRcRvfhIKSk7tBwYMIcAkgLT+N38+UnCiKq/R6CP8FvugGJ1cr0713vAQTd1rvBqrgO5TNKYM/VuoRxu+Dr3rBtg+hqMDS0QlhUZIA1lBZZZwCkns4HADHdu3MHssvJ38BYGjTobjYudz0vkatMo4CRl3OMns85WZY/9ekT40//q2qVHZ2+L44lcbfL8WmQX0K4+KIHTOGhJnv1t7RwB7PgnsjpXDw7s9KbGKjtmF8m/EALDm+hAKt/NIvUW4a/DYe/pqolFZp0BGe3KbUXrT2QssaG+j6BDyzV9kxrC2ALe/B132UTWJC1FGSANZQZRWBzj10CACnTh3NGselrEtsiVMSqVGho27ZrqmvkgCeTapBCaCVHf9mCk5dutBk5Urc778f9HrSfvqJc0OGkLlli6VDMz1bR+j3tvJ85xzl9IgS3Nv0XnydfEnKTWJl1MpqDNBKxOyEhbcrp3iorxbcnrBROYe3NnEPgIeXw/DvwMkLkk4oSeCeL2RtoKiTJAGsoa5NAd9cBFqXl0fuCeVfro4dzZsA/hD5Azq9jq7+XWnmcev1P019lJHBqMs1ZLQpJxUuHVGeN+lj0VCqm8bVlQbvz6LRou+wDQigKCGB+KcnEf/CFAovXrR0eKbV6n5lmq8oT1njVcKGEDuNHeNajQNg0bFFFOmKbmpTJ2mLYNM7sGSIMorq2QTGb1CmfatavLmmUqmgzYPKZpaQgcpo4PrXlfI2GbXsvw0hyiAJYA1lnAIuoQRM3vHjUFiIxscb24AAs8VwJe8Kv53+DYDHWj9WattmvoYEsIaMAEZvA/TgE1ZzdyyamfNtt9Hk71V4ThgPajWZ69YRNWgwlz/7HF1uDVqrWRUqFdwzVylIfPZfOPFnic2GNx+Oh70H8Vnx/HPun2oOsgbKuqwkPTs+AfTQ4RF4agcEdLJ0ZNXDxQdGL4Mhc8HGUfn/xYIeELna0pEJUW0kAayhsktZA5hz8Or0b8dOJe4QNpVfTv1CblEuLTxb0LNBz1LbGkcAa8oUcB2c/i2J2tERv5deIvj333Dq0gV9fj7JX3xB1KDBpP+9Gn1tmPrybqYcDQZKWZjcKzc1cbJ1YlzrcQB8eeRLCnV1pHB2SeL2w1d3QMwOZWPEg4vh3i/A/ub1vbWaSgWdx8PEHcp5xXlXYPkYWPe6bBARdYIkgDVUdinnABvX/3XsYLb75xTm8HPkzwBMaD2hzETTsAkkJbuAtGwL/89Tr79uA0jdTgANHMLCaPT9UhrOm4dtgwYUJSRw8aWXiH5gOJlbtqC/RS09q3H7FPBqBlmJyrRmCUaFjsLTwZP4rHjjmdZ1il4P+79TjkvLvAjeIfDEZmj9gKUjsyzv5sqaxx7PKl//9wUsGVzqUYNC1AaSANZQ2bc4Bk6v05FzWCnv4djRfNM1v5z8hSv5Vwh0DaRv475ltne2t6GBu7Jb8FyyhUcBU8/BlfPKsVCNb7NsLDWISqXCbeAAmqz5B58XJqN2cSH/5Enin55E7KjRZP/3n6VDrDwbe2U6D+DAdxC9/aYmTrZOTGit1AX86uhXdWtHcGEurHwG/pkKukKlSPITm5VzdQXY2MGA92DkT2DvDvH7lXIxp9dbOjIhzEYSwBrKuAnkhjWA+WfPosvIQOXoiEML8/zPOz0/ne+OfwfA0+2exkZdvgXhTQ3rAJMsvBHEMPoX2LXuTWuVg9rBAe+JE2m6cQNeTzyOysGB3CNHOD/uMWJGP0zm5s3WOTUcfAd0Gqc8/+sZyL/5+LcRoSPwcfThUvYl/jxT8nrBWictVimAHP4TqNTQ920Y8T3Yu1o6sponbAhM3A4NOiilcX4eAf++BTqtpSMTwuQkAayhblUHMGfffgAc27dDZWtrlnsvOr6IzIJMmtVrxuDgweW+zrAO8KylN4Kc26r8KdO/pbLx8MD3xRdptnEDHo88gsrWltzDh4mf9Aznhg7jyu9/oC+wslGy/u9CvUaQfh7WT7/pbQcbBx5vo5yh/PWxr8nX5ld3hNXr7Cb4ureyI97JSznR4/YXan1dzCrxCILx66Hrk8rXO+fCTw/KecKi1pEEsIa61Ukg2Xv2AODcvYdZ7puQncBPkT8BMLnjZDTqm9cg3sq1EUALJoA67bXpvzq+AaS8bHx88J8xnaab/sXriSdQu7hQEBXFpenTOXP33VyeP5/ChARLh1k+9q5w30Ll+aGlcGbjTU0eDHkQf2d/knKSjLvcax2dDrZ/BD8OV0ayDIWd61hJpEqzsYfBHyk1A22dlDPFv+4Nl45aOjIhTEYSwBqqpELQ+qIicvbtU16/zTwJ4If7PyRfm09H3470DuhdoWub+tSA00AuHoa8dGUdTwPzbZKpjWx9ffF9cSrNtm7B96Vp2Pj4oL2cTPKChZy9uy/xzz1H1q5dNX96OOh26D5Jef7XJMhMLPa2ncaOJ9sqozvfHP2G3KJaUhLHIC8dlj8Cm98F9NDxf/DYWqgXaOnIrE+bB5UNIh5Byrri7/rD0V8tHZUQJiEJYA2VVcIu4LyICHSZmajd3HBo2dLk99x1YRcbYzeiUWl4vdvrFS4x0+zqFPD51Bzyiyy0ZsZQ/iW4F1Rg9FJco3FxwWvCBJpt+peGc+fg1KULaLVkbvyXuAmPE9W3H0nz5pF/ruSTN2qEu/8PfFtCdhL88fhNa7jua3ofDV0akpKXYtztXiskRcLXd8Kpf0BjD8M+g2Hzrf84N0vybw1PbIGmd0NRrvLztO51pZC2EFaslpZ7t37ZBTevAczerUz/OnXtgkpj2uQmpzCH9/a+B8DoFqMJ9az4BhMfV3tcHWzIzCsiJjmHUH8LLDI3rP+z0PRvoVbH/uhUdpxNJvJSBudTcsjIK6RIp8fF3gYvZzua+roQ5u9Gj6ZetKzvhlpdM9djqezscBs0CLdBg8g/c4a0ZctJX7mSwosXSfnyK1K+/AqH1q1xHzYM1wEDsPXztXTI19g6wkNLlaO+orfDtg/hzteuva2xZVL7SUzfOZ3vjn/HgyEP4m7vbrl4TeH4H7DyWSjMBvdAZaNHQ/OeFFRnOHnCmF+VM4R3fKKUikk4qtRQdPGxdHRCVIokgDVUdgkngRjKdDj3MP307ycHPiEuMw5fJ1+eaf9MpfpQqVQ09XEhPO4KZ5Iyqz8BzM+CuL3K82reAJKQnsfSPTH8su88V3JKLjJ8JaeQ+LRcjsSnAxcA8HCypX9Lf+7t0IDuwV41Nhm0b94c/zdm4PvSNLI2byZ95Sqydu4k7/hx8o4fJ3HWLBzbtcO1X19c+/bFLijI0iGDTwgMnQd/PAHbZkOj7sX+YXBP8D0sPbGU02mn+eboN0zrMs1ysVaFthA2/h/8t0D5ukkfGL4InL0sGlato9YoI8v128NfTyuFtL/uAyN/kERbWCVJAGuorBs2gWgzMsg5cEB5rWfpp3JU1Pb47aw4vQKA925/Dxe7ypdOCfVzJTzuCqcTMqGtqSIsp9jdSo2zeo2Uc02rQU5BEQu3RvHV9nMUFClr4zyd7bgz1JcOjerRxMcZDyc7bDUqMvOKSMzI43RiFuFxV9h7LoW0nEKWH4hj+YE4Grg78GiPIEZ3DaSek121xF9RagcH3AYPxm3wYIpSUshYs5aM1avJPXLE+Ej6+BPsmzfHpU8fnHv2xLFjB9R2Fvo8bUcov6gPfQ+/jlNq33k1BUCj1jCl0xSe/vdpfj75M6PDRtPQpaFl4qyszATlc51XZgfo+YKSpMjyB/NpOUwpor3sYUiNgkUDlRqUHcZYOjIhKkQSwBpIq9OTV6gkE4Y1gFnbd0BREXZNm5p0dCUuM47Xd74OwKMtH6V7/e5V6i/k6qjfqcSba7CZnfH0jz7VUubiSNwVnvvlMOdTcwDo3NiDJ+9owt1hfmhKGckb2Fr50zBdvDL8ImuOX+Jieh6z153k002neaBjABPvaEojLyezf47KsvHywvPRR/B89BEKExPJ3LSJrH//JXvffvLPnCH/zBlSvvkGlaMjTl274NKzJ849emDXtCkqdTUuPx70ESRGwIUDSl23x/8FRw8AejboSTf/buxN2Mvnhz/n/V7vV19cVRW7W0n+shLB3k3Z/Rw2xNJR1Q2+LeDJLfDHU3B6LaycBBcOwsAPlKLSQlgBld7qz4CynIyMDNzd3UlPT8fNzc10/eYV0vatDQCcnDkQB1sNF6a+SMaaNXg98QS+L041yX2yC7N5ZM0jnL1yljbebVg8cDH2Gvsq9bnrbDJjvt1LkJcTW1+q5nV4C3pAUoSyLsfMx1t9vyeGmasjKNTqaeDuwP8NbcmAVv6VPps5r1DL30cusnhXDBGXMgDQqFXc36Ehz97ZjKCrR+1ZA216OlnbtpG9axdZu3ajTU4u9r7G3R3Hjh1x6tQRx44dcWjd2vwjhJmJ8M1dkBGv/ANhzG+gUeponkg5wajVo1ChYsXQFbTwbGHeWKpKr1emeze8AXqtstllxA/KmciiehnK7Wx9H9BDYDdl7albfUtHJspgrt/f1kQSwCow1w/QpfRcery/GRu1ijPvDUJfWMiZ23qiy8qi8S8/49Sh6uVN8oryeHbTs+xN2IuPow/LhizD16nqi/iTs/Lp/O6/qFRw4u0BONlV0yBzZgJ8Egqo4OVzyqJtM9Dp9Mxed5Kvtp8DYFBrfz4Y3hZ3R9MU5dbr9eyNTmXh1ii2nb4MKIngve0b8NxdzY1nLlsLvV5P/unTZO/cRfauneQcOow+L69YG5WdHQ4tW+LQqtXVR0vsmzQxfaHzS0eV6brCbGjzENz/NVwdiXx528usjVnLbQ1u46t+X5n2vqaUkwp/Pw+Rfytft3kIhn4Kdtb1c1HrnF4Pvz8B+eng4qdswGlUtdkUYV6SAMoUcI2Ufd0pICqVisytW9FlZWHj64tju3ZV7j+vKI8Xtr7A3oS9ONk4Mf+u+SZJ/gC8XezxcrYjJbuAs0lZtA2oZ5J+y2TY/Vu/nVmTv9f+OMbyA8oh8S8PDOXp3k0rPepXEpVKRfcmXnRv4sXh82nM33SGLacu88ehC/x1+AL3dWhoVYmgSqXCITQUh9BQvCaMR19YSF5kJDkHD5F76BA5hw6hTUkhNzyc3PDwa9fZ2WEfGopDWBj2zZph36wpdk2bYuPrW/nvd/228NASWDYajv2qFI2+Zw6oVDzX8Tk2nt/I7ou72X1xN7c1qIFnSMfuVpKMjHhQ20D/96DbU3KqR00QMkCZEl42Bi5HwpJ7lOngLo/L34+osSQBrIGyrhaBNmwASV+5CgD3YUOrvHYqOTeZyZsnczT5KI42jizou4DW3q2rFvANQv1d2R2VwsmEzOpLAKOuW/9nBnq9npn/RLD8QBxqFcwe3paHOpu3sG6HRh4sfqwrR+KuMH/TGTadTLLaRNBAZWuLY9u2OLZtC4+NQ6/XUxgbS+6x4+SdOEFeRIRS7zIri7xjx8g7dqzY9WoXF+ybNsWuWVPsg4OxDQjENjAAu8BANOX5V3xIf3jga/htAhxYpJzy0P9dAl0DGRU6ih8jf+Sj/R/x69Bfy30GttnptLD9Y9j2Aeh1ygan4d/JztOaxqupsr501bNw4k9YM00pTH/PJ0pZIiFqmBryfzhxvezrikAXJSeTtW0bAO733Velfv+79B8zds4gMScRd3t3Pr3zUzr5dapquDcxJICnEqppI4heb/b6f59vPsviXTEAfPRgO4Z3CjDLfUrSLrAe343rwtH4K3z6b+1IBA1UKhV2QUHYBQXhPlTZwKDX6SiMi1OSwciT5J+LouBsFAVxceiysoy7jW+kdnPDLiAA28BAbAMaYuvnj42fH7Z+vtj4+WHj7a1MK7cerpQM+vt52PM55GfAkHlMbDeR1edWc/bKWVacWsHDYQ9X97fjZilRymkmcUoJKNqNVo4os7dAjU1RNnsXZQ1yg47w75sQ/hMkHoeRPyrVCYSoQawmAVywYAEfffQRly5dolWrVsybN49evXrdsv22bduYOnUqJ06coEGDBrz88stMnDixWJvff/+dN954g6ioKJo2bcp7773H/fffb+6PUiZDCRgnOxtSf/gRiopwbNcO+2aVW+SdmJ3IF+Ff8OfZPwEIcgvis7s+I8g9yFQhFxPqp/xyOl1dO4Evn4SsBLBxgEDTr7tZdzyBTzaeBuCtoS2rNfm7XtuA2psIXk+lVmPXuDF2jRvjNmiQ8XVdQQEFMTEUREWRfzaKgthYCuPjKYiPR5ucjC4jwziCWHLHKjReXtj6+mLj64uNajCahJ1oTv6O5r8obO6ewktO9zEvcTHf7v2cQUGD8Li6W7ja6bTKRo/N70JRHti5KNPV7UZaJh5RfioV9HxeWY7y22Nw6Qh81RseWixnMYsaxSoSwOXLl/PCCy+wYMECevbsyVdffcWgQYOIiIigUaOb/1UVHR3N4MGDeeKJJ/jxxx/ZtWsXkyZNwsfHh+HDhwOwZ88eRo4cycyZM7n//vv5888/GTFiBDt37qRbt27V/RGLMYwA+mpzSPtZOabK64nHK9SHXq8nIjWCX0/9yj/n/iFPqyy8Hxk6kqmdpuJka77yIoYC0CerawTQMP3b+DaTH3l1OjGTF1eEAzDutiDG9Qw2af+VUVoiOLC1P+NuC6ZLkIdJ1ybWBGo7OxxCQnAICbnpPV1ODgXx8RRefRTExVOUmEhRUhKFSYkUJV2GoiK0ycnKrmRjkni15mV4NPzxPM2BLwBI48LHt5Ps4YXa1RW1qwsaF1fUrq5oXF1Qu5TwmrMzakdHVI6OqB0clD8NzyuyoSXxBPw9GeL3K1836aMc6SYjSNalSW94cptyLvOlcPjhfrj7TbjteePmIyEsySp2AXfr1o2OHTuycOFC42thYWHcd999vP/+zXW7XnnlFVatWkVkZKTxtYkTJ3LkyBH27FEKpo4cOZKMjAzWrl1rbDNw4EA8PDz45ZdfyhWXuXYR/fBfLG/8eYxPT/9KSOQ+7Fu0IPiP32+5/q9IV0RaXhoXsy9yOu00J5JPsOviLhKyE4xt2vu058XOL9Let73J4ryV7PwiWr25HoBDb/TD09nMJT5+egjObIB+70DPySbrNju/iCGf7SQ6Ofv/27vzuKrq/PHjr3MvcNlBQfZVFBA1chf31FzKtKzUqa/ZWDZLVpZNy/Trq9V8W2amZnKcrCYzm5qWSS3LFXNP3HdFRRYBBRGQRXa45/fHkasoIiBw7+W+n4/H7V7O+Zxz3qfjvfd9P+ezENfZi88f64+93vI+uK9OBGt183fn0UGhTLgtoM50gtauxqhysbSS/JJKLlVUU3L5camihtLKai5VVFNVrVJjNFJtVKkxqtpzdQ36S4W4Fl3EuSgf1+KLOJYWYSgpxqsgFb8Lh1DLjVRX2FNZaYe+peeytrdH5+ioJYPOTugcLyeGBgOKvT2KgwOKTkW5mIRy8TSKzqgtjxiCEtQLxeFyGfsrzzoHB9Dboeh1oNej2NmBToeit0Ox02vLLj+ulLu8TqdDsbO7vE5f91lRQNGh6BTttU4HiqL9oLj2b3FzVWWwaq52Oxigy51w34fg4m3euGyc9AK2ghrAyspK9u3bx0svvVRn+ZgxY9ixY0e92yQkJDBmzJg6y8aOHcvixYupqqrC3t6ehIQEnn322evK/P3vf79hLBUVFVRUVJj+LioqauLZNI7+v0+xZGcSfnlQo4MFoys48+P9qKpKjVqDUTWansuryymoKEDl+jzeoDcwMngkU6Km0Me3T5t9YLsY7Ajp6Ex6fikns4uJi2jFKamqKyHtF+11C0//9qdVx0nNLcHfw5F/PtzbIpM/uFIjeCK7iKU7zrDiQCaJWUW8uOwI81ce584YX+7rFciQrt4Wew4AhWVVnL1YRubFUjIvlpF5sYyc4nLyLlWSV1JB3qVK8ksrubWfrDrAW3sY0B4dRxAccZ6P7d+jmy4DVYWpnt25oC/COT8QfcZ4XKoqcKkuw7mqHJeqcpyr6z67VJXjVFOBY00VjjWVGGqqMFRXoKsNtqoKY1UVxuLG1Ipf1WHgxG5g962ccKsyKgoqCqqiPah9fdWyK69BRQfKle24ukztTq/6nFK56jNLqWfZ5ddqnY+2hpZd/xl49f5qt1GuXl4nntpyylXl6otVqVNeAdzV7vgYc1DWH6D6g8Fk6f0oU27lTkwjPs9b5SO/kTttwWMrd09izB+eaLkdCsAKEsDc3Fxqamrw9fWts9zX15fs7Ox6t8nOzq63fHV1Nbm5ufj7+9+wzI32CfDWW2/x2muvNfNMGs9YXIhfHlTawaK7dPzilgEFDW+jU3R4O3rTtUNXIjtG0s+3H/38+uFo17K3RBsr0teN9PxSTmQXtW4CmLlHG9fN2Rt8W64387pj2Xy1OwNFgXenxLZ+LWYLiPZz563JPXlxXBTf7s3gq90ZpOaWsPLQOVYeOoebox3DunZiRFQnhkV2wte97f5tqKpKYVmVKbGrTfLOFlz5u7i8ulH7UhTwcLLHzdEOFwc7XAzaw9Wgx9nBDoOdDjudgl6nw06voNcp2OkUdIpy+UeUVitoNKrUGKHGaKRGDeHrqk8Yd3YhcQU/8reSE0wMDCDX4xw+vlBZEUd2tZHyqhoqqo1UVNVQXm2kxthANqqq2BtrMFxOCB1rKjFUV5oSRNfqUoZyhDHKHjyMpahGyKn2ZEN1b87VeGNvrMHeWI2d6bnatMy+RnutU43oVWP9z8brl1+97urldqqxWddVS3BV6vn9KepRwZWmAJ3IaaCkuNrprBt/L4vms/gEsNa1tVeqqjZYo1Vf+WuXN3WfL7/8Ms89d2UWjqKiIoKDW34okMi7H+Si8g4VoU48NP0jpuv06BQdeuXy81V/O+gd8HL0wtPgid6C5v+MCXBnQ+J5jp9rnVpSk6unf2uhdjW5lyp4ebk2/MgTQzszKMK6btV4OjvwxLAIZg3tzOHMQlYcOMuPh86RV1LJqiNZrDqSBUCgpxO3h3gSG+RBFx9XwrxcCO7o3KxawvKqGvJKKrlQXGGqxTtbUHb5tZbo1XZuaoiXiwNBHZwI7OBEUAdnfN0d8XZ10MaXdHXAy8VAB2d77FqtJnMgnFpH4MqnebywkA86eKI6fcZ/7+iCW9Td143pVl1j1BLCaiNVNUYqq41UXn6+/m+Vymoj+ktZhKR+TfiZ/+JUmQ9AicGH/aGPccL/XvSKPYGqiqqqqCoYVTDWJq5Aiaqiu3wLVqeAgvasuzz9oK52uYKpnAKmMgpc3lbR7vZe3gbViM5Yo/0NKBhRVFBQ0aFefq0t06kqCkZQFXQYtW1UFUU1crluD0XV6vUU4+W/L2+LakRRVa33vvFy4ln7fPlz+ur/Xp1cKuqV+jZTcfXacldtULu/q6qNTXWN6vXlrttnnXVXL7t+O67dr+lJrVNOV1NBQNLXdDiv3bm45BlNZvSvqTI0ssPRzZLtOv8Pb313NyzcQFV844/duJLRPaIauUfRFBafAHp7e6PX66+rmcvJybmuBq+Wn59fveXt7Ozw8vJqsMyN9glgMBgwGG5tqrTG6H/3LDj8OlQWgZM/eHdt9WO2tB4BWpuKo62dAJ7+WXtuweFf/vTTcfJLKon2c+O5Mdd3OLAWiqIQG+xJbLAnr06I4VBmAZtP5LDp5AWOnSvUErSCMlYdzjJto9cpdHB2wMvFgY4uDrgY7LDXK9jptVq1ymojZVU1lFfVUFpZQ0FpJbmXKhuV3AF4uzoQ2MGZoA5Olx/OBHk6mZK+Nps5piGRY+Gpvczc+hdWnfkvZ+xhQfxsXtn4Jtz+EHS/DzwCAbT/L3odLjf7WCjOhlNr4ehySNumjecH4BYAQ+bg0nsGQ+0dufG4BqJ9mQqHvoafnsOt6hD+F+Zr4wX2uF8GjhZtxgI+bRvm4OBAnz59iI+PrzNES3x8PJMmTap3m7i4OH788cc6y9avX0/fvn2xv9wbLy4ujvj4+DrtANevX8+gQRYwA4CdAYL6wplftNH/rTEBDPQAIOl8MeVVNTjat0LtZEmeNtAqQMTIFtnltqQLfH/wHMrlwZ4NdpZTq3or9DqF3iEd6B3SgefGRHGpoprDmQUcSC/g2LlCUnNLSc29RHmVkdxLFeReqrj5Tq9hr1fwcjEQ2MGJwKuSOu21M4GeTjg5WMn/T4Mbhjtf59Wkfjy+44984+bKxHNJ9Fz/Cqx/BTp1g9A48O2uDczs0gnsLrfdqyjU/m3mJUFOIqQnQN7puvsPHQz9n4DoCaC3+I9h0Rpip0FgH1g+S/scW/aYNsXf3e+BSys2mxHiMqv45HnuueeYPn06ffv2JS4ujo8//pj09HTTuH4vv/wyZ8+e5fPPPwe0Hr8LFy7kueeeY9asWSQkJLB48eI6vXufeeYZhg0bxjvvvMOkSZP44Ycf2LBhA9u3bzfLOV4nJE5LANMToM8Mc0fTZP4ejnR0cSC/pJJT51tpRpCUTYAKPjHgHnDLuyuvquGVFUcBmBEXRmyw5y3v01K5GuwYFOFd5/a20ahy4XLyl1+i9bQtqaih2mikukbrUetgp8PJXo/BXnvu4KLVFnq5GnB3tGt3PUMHdL2HCdk7+CnlJ17v3IOvSg3YpSdo031dSLz5DkwUbVy47vdqNYgdwlopYmFVvLvCY/Gw7V3Y+hc4/r32o3/iPyBqnLmjE+2cVSSAU6dOJS8vj9dff52srCx69OjB6tWrCQ0NBSArK4v09HRT+fDwcFavXs2zzz7LP//5TwICAliwYIFpDECAQYMG8fXXX/P//t//49VXXyUiIoJvvvnG7GMAmoTGwTa0JNAKKYpC9wB3tiXlcvRsUeskgMkbtecWqv1buPE06fml+Lk7MteKb/02l06n4Ovu2KadQ6zB832fZ2vmVk5U5PKfAX/gkalfaD/M0ndqNXv5qVBeAFXlgAqOHuDoqU0N5t1VmxUiNA7MNai0sGx6exjxktb0YMVvtYHtv5oKPafA2DfBtZO5IxTtlFWMA2ipWnUcoYpieDtEayv07HFTmyNr8s7aEyzanMyv+ofw1uSeLbtzVYX3ukFxFkz//pbbAGbklzLqvS1UVhv58H96M66Hf8vEKdqF7059x2sJr+Fk58SKSSsIdLW+96OwAlXlsPENSPgn2o8JT218017TZfDoFibjAGqdvYQlMriB323a6/QE88bSTD0CtHaAx84VtvzOc45ryZ+dk3a7/Ba9s/YEldVG4jp7Mba7XwsEKNqTyV0n09unN2XVZczbMQ/53Sxahb0jjP0/mPWz9vlfXqDNWb1kvDZDjBAtSBJASxZ6uUOKld4G7nm5I8iJrGKqapo3ztgNnd6gPYcNueXp3/adyeenw1koCvy/Cd3aXTs2cet0io7XB7+Oo96RXVm7+O+p/5o7JNGeBfaBWZu0W8D2LpCxEz4cok0ReEnGDxQtQxJAS2ZKAK2zBjC4oxNujnZU1hhJOn+pZXdeO/xLl1G3tBujUeX1n7TG/FP6BNP9cq2lENcKdQ/l6d5PA/Du3nc5e+msmSMS7ZreDuKehCd3QbeJWnOgfZ/Bgl5ap5GqMnNH2OJUVSWnNIdtmdv45MgnvLD1Be774T5WJq80d2jtklV0ArFZtbc2LyRCaT44dzRvPE2kKAo9AjxISMnj6NlCYgJaqJ1FZcmV2+IRt5YA/nj4HIcyCnBx0DN3rO11/BBN83C3h9lwZgP7c/Yz75d5fDzmY3SK/I4WrcgzGKb+W+sdvO6P2pAxP78Ou/8Fg+doo0TYO910N5ZGVVWySrI4nnec43nHScxPJDEvkbzyvOvKJuYlMjFiohmibN8kAbRkLt7gHQm5p7SEJ/puc0fUZLcFaQnggYwCpvRroVlT0n6BmkrwCL6lMRKraoy8u/4UAL+/ows+btL7VTRMp+h4Y/Ab3L/yfnZl7+Lbk98yLXqaucMStiB0EDy+EY5+Bxteg6JMWPsibH/vciL4KDjcytzCrUdVVbJLsjmUe4jEvERTwldYcX37cJ2iI9w9nMiOkUR20B4xXjFmiLr9kwTQ0oUO0hLAMzusMgHsFeIJwIH0iy230+Srbv/eQnu97/Zlkp5firergZmDw1soONHehbiH8EzvZ3hnzzu8t+89+vv3p7NHZ3OHJWyBTge3TYGYSXDwS9j2HhRmwLqXYcs7Wm1gv8fBM8SsYZZXl5OYn8ihnEMcunCIwxcOk1N2fdtFO50dXT270s2rG906diPGK4auHbriZOcEeclwYhXseQuGPX/LzX3E9SQBtHQhg7R2H1baE7h3iDb22anzxVyqqMbV0AL/5Go7gNzC7d+K6hr+8XMSAL8fEWE9M1QIi/BQt4fYnLmZXVm7eGnrS3xx1xc46B3MHZawFXYG6DsTbv8fOPQf2P43uJgGv7wPO/4BUXdB70e0MVL19q0ezvmS8+zP2c+hC4c4lHOIExdPUG2sOz2kXtET2SGSnt49tYTPqxtdPbteed9UV0LGLjj4NpxcA7knr2x8YpUkgK1AEkBLF3q5HeC5g1BxCQyuZg2nqXzcHQn0dOJsQRmHMgoY3MX75hs15OIZbfBdRQ+dhzd7N9/syeBcYTl+7o48NMC8v5aF9dEpOt4c8ib3r7yfxPxEFuxfwPP9njd3WMLW2Dlot357TYdT62DXh5C6BU78pD1cOkGPB6DngxDQq8XGEsy6lMXe83vZk72Hvef3klGccV0ZL0cvYjvFEusTS2ynWGK8YrSavVqqCvkpWoe+5J8hdRtUlVxZr7PTRnmIuhuixrdI3KIuSQAtnWeI1tatMAMy99zygMfm0Du0A2cLyth/5uKtJ4C1t3+D+mkzLjRDeVUNCzdqc7M+ObJL68xTLNo9H2cfXh/0Ok9vepqlx5cyKGAQgwItYC5xYXt0eoi+S3ucPw77P9faCpZcgF2LtIeLD0SOgchxWmLVhJlpMoszTcnevvP7rusBr1N0RHWIopdPL1PSF+ASUHdIrZpqrQNL+i7tjlbGLm0s16u5dNJqLbuOga53NvszXjSOJIDWICQOjmRo7QCtMAHsFezJj4fOsb8l2gG2wPAvX+w8Q05xBYGeTkzt20IdU4RNuiPkDqZGTeWbk9/wx+1/ZNnEZXg5eZk7LGHLfGNg/Nsw5g1tuszD38Cp9VCSAwe+0B6gzaEeMhAC+4JPN+gUBQ4uABRVFrE7azc7zu0g4VwCmZcy6xxCr+iJ8Yqhr29f+vr1pZdPL9wc3LSVqgqleVqCl30Ezh+F7KPa4P1VpXVj1dlrMXQZpSV+vj1lxpM2JAmgNQgdBEe+tdoBoXuHar80D2QUoKpq8wdarqmC1K3a62YmgKWV1Xy4JRmAp0d1wcFOPmzErXm+7/Pszd5LcmEyL257kY9Gf4ReJ7XKwsz09tr8wpFjtfZ1Z36BU2u1NtR5p7WELOc47P2UKuCowcCODr7scHTgqFLJ1UP326Gjh2sQfd3C6esawu3OgbioKpRdhBOb4MAybYDqi2eg4AxU3mDcV4MHBPfXkr6Qgdo82Rbac9kWSAJoDcKHac+Ze6Cy1OreMDH+7hjsdBSUVpGSW0JEp2a2Y8zcCxVF4NQR/G9v1i6W7jhD7qVKQjo6M7l3UPPiEOIqjnaO/HX4X3lo9UPsytrFwoMLeab3M+YOS4gr7By0u0e1d5AuXeB88jq2pqxhW1ESu42llOhqf5hXAhBeWcWgsnLiysroW16Bi5oGbG/8Md0Dwbc7+PYAvx5a7Z5XF6nhsyCSAFqDjp21N1PRWa1a3cpuAzvY6YgN8mR3Wj57UvObnwAmrdOeI0ZqbV6aqLi8io+2arV/z4zqir1ePohEy+jSoQuvDXqNF7a+wCdHPqGnd09Ghow0d1hCmBhVI8fzjrM5YzNbM7eSmJ94ZaVOwdPBnYEekQxyCiBOccavrFi7lVtVqg2+X1UKKFrnDJ1eq2F06qD9IHfuqI1b6xkGHUK1duu3OEWnaH2SAFoDRYGwoXD4a0jbZnUJIMDAzh3ZnZbPjuQ8pvVvZq/bU+u158ixzdr8s1/SKCitonMnF+7tFdi8GIS4gfHh4zl04RBfJn7JK9tf4ZsJ3xDiLj3MhfmUVpWScC6BLZlb2Jq5tc4sGwoKt3W6jWFBwxgcOJhuHbvJrDY2RhJAaxE+TEsAa9vAWZmBEV4s2HiahJS85rUDLMiAnGOg6KDL6CYfv7Csin9tSwFgzuhI9LrmDyAtxI3M7TOXY7nHOHjhIHM2z+GL8V/gbG9dTTaEdcsvz2dT+iY2pG9gV9YuqoxVpnUu9i4MChjE8KDhDAkcIh2WbJwkgNYifKj2fHY/VBSDwc288TRR75AOONjpuFBcQfKFErr4NPE2cNLl2r+gfs2aE3nxthSKyquJ8nVjQk//Jm8vRGPY6+15d8S7TPlxCkkXk3hx24v8fcTfpVOIaFXnS87zc/rPbEjfwL7z+zCqV7pwBLkGMSJ4BMOChtHXty/2bTAwtLAOkgBaC88Q6BCmjfZ+JkEbz8mKONrr6RPSgYSUPBJS8pqfAHa9s8nHvlhSyae/pAHw7J1d0Untn2hFPs4+vD/yfWauncnmjM38ff/fmdt3rrnDEu1MRnEGP5/5mfj0eA5fOFxnXbeO3RgdOppRIaPo7NG5+SMviHZNEkBrEj5MSwBTt1hdAggQF+FFQkoeO5PzmD4wtPEbVpVDyhbtddemt//7aGsKlyqq6R7gztjufk3eXoimiu0Uy5+G/IkXtr7AZ8c+I8w9jPsj7zd3WMLKZRRnsDZ1LevPrOdE/ok6627vdLsp6QtykxEOxM1JAmhNwoZpI7ynbTN3JM0SF+EF8ZCQkofRqDa+Ji5tO1SXgVsA+PVs0jEvFFewdEcaAM/dGSm/hEWbGR8+nrTCND449AF/2vknAt0CGeg/0NxhCSuTU5rDurR1rEldw5HcI6blekVPX9++jA4dzciQkfg4+5gxSmGNJAG0JrXtALMOQ2l+s9rCmVNskCeuBjvySyo5fLaQ24M9G7dh7fAvXe/UekQ3waLNyZRV1RAb7MnIaPmAFG3rt7G/JbUolTWpa3hm4zN8Ou5Tunt1N3dYwsIVlBcQnx7PmtQ17M3ei4oKaFOu9ffrz7iwcYwMGUkHx8ZP5ybEtSQBtCZufuAdCbmntGnhuk0wd0RN4mCnY1ikN6uPZLMx8XzjEkBV1SY5hyYP/5JVWMYXu84A8PwYqf0TbU9RFN4Y/Ab5Zfnsyt7F7+J/x9LxSwn3CDd3aMLClFSVsDF9I2tS15BwLoFqtdq07vZOtzM+fDxjwsbg7XSL86kLcZkkgNYmfJiWAKZutboEEGBktK+WAJ7M4bkxUTffIPeUNrWQ3gHChzfpWAs3nqay2kj/8I4M6SIfmsI8DHoD7498n8fWPcaxvGP8Jv43fD7+c/xcpD2qras2VrPj3A5+TP6RTRmbqKipMK2L7hjN+PDxjAsbR4BrgBmjFO2VJIDWJnwY7PnEatsBjojqhKLA0bNFZBeW4+dxk9Hia2v/woaAofE9hzPyS/lmTwYAc6XtnzAzF3sXPhj9ATPWzCCtKI0n4p/g07GfSm2OjTqZf5KVyStZlbKqzuDMYe5hWtIXPo7OHp3NGKGwBZIAWpuwy+0Ac45D8Xlw8zVvPE3k7WogNsiTgxkFbDqZw69uNiuIafiXpt3+ff/nJKqNKkO7ejOgswx2Ksyvo2NHPr7zY6avmU5qYSqPrXuMxWMXSxJoI3LLclmVsoofk3/k5MWTpuUdHTtyV/hdTIiYQEzHGPmxKtqMJIDWxrkj+MdC1iFI2QSx08wdUZONivbhYEYBa49mN5wAlhdCeoL2ugnD3iRfuMTy/ZmA1vNXCEvh7+rPp2M/Zea6maQUpjBz3UwWj1lMJ+dO5g5NtIKKmgo2pW9iZfJKdpzbQY1aA4C9zp4RwSOYGDGRwYGDsdfJ4Myi7UkCaI0iRmkJYPJGq0wA777Nn3fjT7H9dC55lyrwcjXUXzApHozVWseXjo2/HfLntScwqlqi2StEeskJyxLiHsKSsUuYuX4mqYWpzFw3k0/GfIKvi3XV5ov6qarKwQsH+eH0D6xPW09xVbFp3W2dbmNSxCTGho3Fw+BhxiiFkATQOkWMhO3vaQmg0Qg665rAu3MnV3oGenDkbCGrj2bfeFDoEz9pz9F3N3rfu1LyWHfsPDoFXhwf3QLRCtHygt2D+XTspzy27jHSitKYvmY6H975obT7smKZxZn8mPwjP6b8SEZxhmm5v4s/90Tcwz2d7yHMI8x8AQpxDUkArVHwAHBwhZILcP6IdkvYykyMDeDI2UJ+PHiu/gSwugKSNmivoxvX29loVHlzdSIA0/qHEOlrXfMlC9sS7BbMknFL+E38bzhTdIYZa2awcNRCYjtZ3/vZVhVXFhN/Jp4fTv/A/pz9puXOds7cGXonk7pMoo9vH3SKdf1IF7ZBEkBrZOegdQY5tUarBbTCBHBCrD9vrklkd1o+GfmlBHd0rlsgdRtUFoOrHwT0btQ+fzx8jkOZhbg46Hl2tLT9E5Yv0DWQz8d/zpMbnuRo3lEeX/c4fx3+V4YHN23II9F2qo3V7MzaycrklWxM32gaukVBYaD/QO6JuIdRIaNwtne+yZ6EMC/5WWKtIkZqz6d/Nm8czeTv4WQam692sOY6TLd/72rULe6SimreXqPNjfm7ERF0crtBu0IhLExHx44sHruYIYFDKK8p5+lNT7Pk6BJUVTV3aOIqSReTeHfvu4z5bgy/2/A71qSuoaKmgs4enZnTew7rH1jPx2M+5p6IeyT5E1ZBagCtVZdR2nP6Tqi41KQx8izF9IGhbEvK5ds9GTw7OhJHe722wmiEk2u011GNa//3t/hTZBWWE9zRiceGSDsqYV2c7Z1ZMHIB/7fz/1iWtIz39r3HifwTvDboNRztbjJWpmg1+eX5rE5ZzcrklSTmJ5qWexo8GR8+nkkRk4jxkqFbhHWSBNBadewMnqHaLBlp2yFqnLkjarJR3XwJ9HTibEEZPx46x4N9g7UV5/bDpWxwcLsy/3EDjp0rZMmONABen9QDJwd9K0YtROuw19kzL24e0R2jeWf3O6xOXU1qYSrvjniXYLdgc4dnMyprKtmSuYWVySvZnrndNCWbnc6O4UHDuSfiHoYFDsNeL0O3COsmCaC1UhStFnDvp1o7QCtMAPU6hYcHhvDntSdZtCWZ+3oFYqfXXbn92/VOsGv4Vm5VjZGXlx+hxqhyd09/7ojyaYPIhWgdiqIwLXoaEZ4RzN08l8T8RKb8OIX/jftfxoePN3d47ZaqqhzNPcoPyT+wNm0thRWFpnXdvbozMWIi48PH08FRhpUS7YckgNYsYuTlBNA62wGCdhv4460ppFwo4YeD57i/TxCcWK2tbMTwL+9vSOJwZiEeTvb87z0xrRytEG2jn18/vpnwDS9ue5EDOQd4YesL7Di3g5f7vyzty1rQuUvnWJ2q3eJNLUw1Lfdx8mFCxAQmRkwkwjPCjBEK0XokAbRm4cNAZwd5pyE/pUmDJVsKN0d7fjMsgnfWnuBvG05xd8AlHHNPgs5eqwFswM6UPP65+TQAb97XE193aSsl2o/aWUM+PPQhHx/+mO9Pf8+e7D3Mi5tHXECcucOzWnlleaw/s541qWs4kHPAtNxR78io0FFMjJjIAL8B6HXSlES0b5IAWjNHDwiJg7RtcGodDPyduSNqlhmDQvk8IY3Mi2XsXPUZI0Br++d445Hy0/NK+f2X+1FVuL93EHff5t9W4QrRZux0dszuNZsB/gN4ZfsrnL10lifin+C+Lvcxt+9cmU2ikS5VXmJjxkZWp6xmZ9ZO05RsCgp9/fpyT+d7uDP0TlwdrK8znRDNJQmgtYsaryWAJ9dYbQLo7GDHn+7twWNL9+KdvkYbnCjm3huWz71Uwcyle8gvqaRnoAd/urdHm8UqhDn08+vHikkrWLB/AV+d+IoVp1ewJXMLT97+JPd3vV9qq+pRVl3GL2d/YXXqarZmbjWN1wdau767wu9ibNhYmYJP2CxFlcGmmq2oqAgPDw8KCwtxd3c3TxB5yfCP3tqt4BdSGqw1s3RvfvETfzz9MNXoSPv1IbqEhlxXJvNiKY8u2cPpnEv4uhv44ckh+HnIrV9hOw7kHGD+jvmkFKYA0LVDV/7Q9w9yWxitpm9r5lY2pG9g+9ntlFWXmdaFuYdxV+e7uCv8LkLdbzD9pLAZFvH9bWZSA2jtvCLAOxJyT2mDQveYbO6Imu0PQSfgNOyo6c7sJYm8OdmOu3r4o9MpVNcYWX7gLP+3KpHCsir8PRz5z6yBkvwJm9PLpxffTfyOb09+ywcHPyDpYhJPxD9BX9++/P7239PPr5+5Q2xTBeUFbMrYxIb0DSScS6DKWGVa5+/iz5jQMdzd+W6iO0bLeH1CXEVqAG+BxfyCWP8q7FgAt02FyR+bL45b9eEQyD7CB+5z+HNOfwB83Q0EejqRkltCQan2wR4b5ME/H+5NUAfpDSlsW2FFIYsOLeKbk99QbdTGq+vj24eZPWYyJHBIu5yDVlVVTl08xbaz29iWuY1DFw6Z2vSBVtM3OnQ0o0NHE9NRBmkW9bOY728zkgTwFljMP6AzO2DJeHDqAM+fBr0VVuzW3spW9JTPOcmHey6yeFsqxRXVpiJeLg48Mawzvx4cjoNd+/tiE6K5skuy+eTIJyxPWm6qAQtyDWJa9DTu7XKv1XcWKa4sZnf2brZlbmPb2W3klObUWR/dMZpRIaMYHTKaCM8ISfrETVnM97cZSQJ4CyzmH1BNNfy1C5RdhF+vgdBB5oulubb+FTa+ARGjYPpyAMqrajiYUUB+SSV+Ho7cFuihDRQthKhXdkk2/z7+b1acXkFxZTEADjoHhgUN467OdzEsaBgGveXPk11SVcK+8/vYm72X3dm7ScxPxKgaTesd9Y4M8B/A0MChDAkaQqBroBmjFdbIYr6/zUgSwFtgUf+Alj8Bh7+BQU/DmDfMG0tzLBoC54/AxIXQe7q5oxHCqpVVl7E6ZTVfnfiKkxdPmpa72LswKGAQQwOHMjhwMD7O5p85R1VVzhSd4UjuEY7mHuXwhcMk5ifWua0LEOoeypDAIQwNHEpfv75WkcgKy2VR399mIgngLbCof0DHVsB/H9UGg35qvzZVnLXIPQ0L+2g9mZ9PAueO5o5IiHahtr3cqtRVrEldQ3ZJdp31ER4RxPrEEtspltu8byPMIww7Xes1ISmuLCalMIXkgmSSC5JJupjE0byjptrKqwW5BtHfvz99ffvSz68ffi5+rRaXsD0W9f1tJlbYWEzUq8udYOeozQhy/ij49TR3RI13+BvtufMdkvwJ0YIURSGqYxRRHaOY03sOR3KPsP3sdrZnbudY3jGSC5NJLkxmeZLW7MJOZ0eIWwidPToT4h6Cj7MP3k7edHLqhKfBE0c7R+2hd0Sn6KhRa6g2VlOj1lBWXUZhRSFFlUUUVhSSX55PVkkWWZeyTM85ZTn1xmnQG+jWsRs9vHvQw7sHvX164+8qg7sL0ZokAWwvDK7QZTSc+AmO/2A9CaCqXkkAY6eZNxYh2jGdoiO2k1bb9+TtT5Jfns/BnIMcvnCYQxcOcSzvGGXVZaQUppjGGGwNPk4+RHhGmB4xXjF07dAVe519qx1TCHE9SQDbk+73aQngse/hjles4zZwxi4oOAMOrhB1l7mjEcJmdHTsyMiQkYwMGQmAUTVyvuQ8KYUppBamklGcQW5ZLrlluVwou0BRZRHl1eV1ZtS4mkFvwMPBA3eDO+4O7nRw7IC/iz9+Ln4EuAbg7+JPiHsI7g62ebtNCEsjCWB7EjkW9AbIS4KcRPCNMXdEN3foa+2520RwkHH9hDAXnaLD39Uff1d/BgcOvmE5o2qkvLocFRW9okev06NX9O1yzEEh2jN5x7YnBjftNjDA8e/NGkqjVFdonVcAYqeaNxYhRKPoFB3O9s642LvgaOeIvc5ekj8hrJC8a9ubmEna8/EfzBtHY5xaB+UF4BYAYUPNHY0QQghhMyQBbG+ixoHeAS6c0G4DW7Lazh89HwCd3ryxCCGEEDZEEsD2xtHjym3gw9+aN5aGXMqBU2u119L7VwghhGhTkgC2R7ddbk93+BswGhsuay4H/wPGagjsC77dzR2NEEIIYVMkAWyPIsdpNYFFZyFtm7mjuZ6qwv6l2us+M8wbixBCCGGDJAFsj+wdtTEB4Uo7O0uStk2bscTBFbpPNnc0QgghhM2RBLC9iv2V9nz8B6gsMW8s19p3ufav54PaDCZCCCGEaFOSALZXwQOgQxhUXoITq8wdzRWl+ZC4Unstt3+FEEIIs5AEsL1SFLjtcu/a/Z+bN5ar7f8cairB7zYI6GXuaIQQQgibJAlge9brf0DRaW3uLpwydzRQUwW7P9ZeD/iteWMRQgghbJgkgO2ZZzB0Hau93rfEvLEAJP6o9Ux26QQ97jd3NEIIIYTNsvgE8OLFi0yfPh0PDw88PDyYPn06BQUFDW6jqirz588nICAAJycnRowYwbFjx+qUGTFiBIqi1HlMm9YOByTu95j2fPBLqCw1byw7F2nPfR/TeioLIYQQwiwsPgF86KGHOHjwIGvXrmXt2rUcPHiQ6dOnN7jNn//8Z9577z0WLlzInj178PPz484776S4uLhOuVmzZpGVlWV6fPTRR615KuYRMRI8Q6C8EI4tN18cmXshc7c2TV3fmeaLQwghhBCWnQAmJiaydu1aPvnkE+Li4oiLi+Nf//oXP/30EydPnqx3G1VV+fvf/84rr7zC5MmT6dGjB0uXLqW0tJT//Oc/dco6Ozvj5+dnenh4eLTFabUtnR76/Fp7vftjbRBmc/jlfe25x/3g5mueGIQQQggBWHgCmJCQgIeHBwMGDDAtGzhwIB4eHuzYsaPebVJTU8nOzmbMmDGmZQaDgeHDh1+3zZdffom3tzfdu3fn+eefv66G8FoVFRUUFRXVeViF3jPAzgmyDkHq1rY/fk7ilaFfBj/T9scXQgghRB0WnQBmZ2fj4+Nz3XIfHx+ys7NvuA2Ar2/dWiZfX9862zz88MN89dVXbN68mVdffZVly5YxeXLDs1K89dZbpraIHh4eBAcHN/WUzMPFC3pfvm1eWxPXlra9qz13uwd8urX98YUQQghRh1kSwPnz51/XAePax969ewFQFOW67VVVrXf51a5df+02s2bNYvTo0fTo0YNp06bx3XffsWHDBvbv33/Dfb788ssUFhaaHhkZGU05bfOKe1IbEib5Z8g+0nbHzUuGo8u018P+0HbHFUIIIcQN2ZnjoLNnz75pj9uwsDAOHz7M+fPnr1t34cKF62r4avn5+QFaTaC/v79peU5Ozg23Aejduzf29vYkJSXRu3fvessYDAYMBkODcVusDmHa/MBHl8H2v8EDn7bNcbe8A6oRIseBf2zbHFMIIYQQDTJLAujt7Y23t/dNy8XFxVFYWMju3bvp378/ALt27aKwsJBBgwbVu014eDh+fn7Ex8fTq5c200RlZSVbtmzhnXfeueGxjh07RlVVVZ2ksd0Z8qyWAB5dDkPngm/31j1e1iE4/K32eviLrXssIYQQQjSaRbcB7NatG+PGjWPWrFns3LmTnTt3MmvWLCZMmEBUVJSpXHR0NCtWrAC0W79z5szhzTffZMWKFRw9epRHH30UZ2dnHnroIQCSk5N5/fXX2bt3L2lpaaxevZoHH3yQXr16MXjwYLOca5vw66nVAqLCz2+07rFUFeL/VztWjwcgsP5aVSGEEEK0PbPUADbFl19+ydNPP23q1Ttx4kQWLlxYp8zJkycpLCw0/f3CCy9QVlbG73//ey5evMiAAQNYv349bm5uADg4OPDzzz/z/vvvc+nSJYKDg7n77ruZN28eer2+7U7OHO54BY6vhFNrIH0XhAy4+TbNcfpnSNmsjfs36tXWOYYQQgghmkVRVXMNDGf9ioqK8PDwoLCwEHd3d3OH03g/zIYD/4agfjBzPehauCK4qgwWDYL8FIibDWP/r2X3L4QQQtwCq/3+bkEWfQtYtJI7XgEHN8jcAwc+b/n9b/2rlvy5+UvbPyGEEMICSQJoi9z94Y4/aq/j50FJbsvt+/yxK2MNjv8zONrmLyshhBDCkkkCaKv6PwG+PaG8AH56tmWmiKsqg+8eA2MVRI7XBn4WQgghhMWRBNBW6e1g0j9AZ69N07Z/6a3vc90f4UIiuPjAxH/ATQbrFkIIIYR5SAJoywJ6waj/1V6veQnOHWz+vvZ+qj0AJn8Erp1uOTwhhBBCtA5JAG1d3GzoMhqqy+A/U6CgGdPbnVoHq57XXt/xCkSMbNkYhRBCCNGiJAG0dTqdNi2cT3e4dB6WToCLaY3fPvEn+PphUGvgtmky368QQghhBSQBFODoAQ9/q80XfDENFo+B1K0Nb2M0wta/wDf/o3X6iLkXJi2Udn9CCCGEFZAEUGg8gmDmuqtqAifCyqevrw00GuH0BvjXHbDxT4AKfR6F+xeD3t4MgQshhBCiqWQmkFvQLkcSryyBNS9qM4XU8u2h1Q5WV0DWISjJ0ZYb3GHsm9B7ullCFUIIIZqjXX5/N5EkgLegXf8DOpMAW96GlC3ANf9EDB5w+69g6Fxw9TFLeEIIIURztevv70ayM3cAwkKFxsEjP0DxeTi7D4rOgt4BvCO14WPsHc0doRBCCCGaSRJA0TA3X4i+y9xRCCGEEKIFSScQIYQQQggbIwmgEEIIIYSNkQRQCCGEEMLGSAIohBBCCGFjJAEUQgghhLAxkgAKIYQQQtgYSQCFEEIIIWyMJIBCCCGEEDZGEkAhhBBCCBsjCaAQQgghhI2RBFAIIYQQwsZIAiiEEEIIYWMkARRCCCGEsDF25g7AmqmqCkBRUZGZIxFCCCFEY9V+b9d+j9siSQBvQXFxMQDBwcFmjkQIIYQQTVVcXIyHh4e5wzALRbXl9PcWGY1Gzp07h5ubG4qitOi+i4qKCA4OJiMjA3d39xbdtyWQ87N+7f0c5fysX3s/x/Z+ftB656iqKsXFxQQEBKDT2WZrOKkBvAU6nY6goKBWPYa7u3u7fWODnF970N7PUc7P+rX3c2zv5wetc462WvNXyzbTXiGEEEIIGyYJoBBCCCGEjZEE0EIZDAbmzZuHwWAwdyitQs7P+rX3c5Tzs37t/Rzb+/mBbZyjuUgnECGEEEIIGyM1gEIIIYQQNkYSQCGEEEIIGyMJoBBCCCGEjZEEUAghhBDCxkgCaCYffPAB4eHhODo60qdPH7Zt29Zg+S1bttCnTx8cHR3p3LkzH374YRtF2nRvvfUW/fr1w83NDR8fH+69915OnjzZ4DabN29GUZTrHidOnGijqBtv/vz518Xp5+fX4DbWdP0AwsLC6r0eTz75ZL3lLf36bd26lXvuuYeAgAAUReH777+vs15VVebPn09AQABOTk6MGDGCY8eO3XS/y5YtIyYmBoPBQExMDCtWrGilM2hYQ+dXVVXFiy++SM+ePXFxcSEgIIBHHnmEc+fONbjPzz77rN5rWl5e3spnU7+bXcNHH330ulgHDhx40/1awzUE6r0WiqLwl7/85Yb7tKRr2JjvBWt/H1obSQDN4JtvvmHOnDm88sorHDhwgKFDhzJ+/HjS09PrLZ+amspdd93F0KFDOXDgAH/84x95+umnWbZsWRtH3jhbtmzhySefZOfOncTHx1NdXc2YMWMoKSm56bYnT54kKyvL9OjatWsbRNx03bt3rxPnkSNHbljW2q4fwJ49e+qcX3x8PAAPPvhgg9tZ6vUrKSkhNjaWhQsX1rv+z3/+M++99x4LFy5kz549+Pn5ceedd5rm+65PQkICU6dOZfr06Rw6dIjp06czZcoUdu3a1VqncUMNnV9paSn79+/n1VdfZf/+/SxfvpxTp04xceLEm+7X3d29zvXMysrC0dGxNU7hpm52DQHGjRtXJ9bVq1c3uE9ruYbAddfh008/RVEU7r///gb3aynXsDHfC9b+PrQ6qmhz/fv3V3/729/WWRYdHa2+9NJL9ZZ/4YUX1Ojo6DrLfvOb36gDBw5stRhbUk5OjgqoW7ZsuWGZTZs2qYB68eLFtgusmebNm6fGxsY2ury1Xz9VVdVnnnlGjYiIUI1GY73rren6AeqKFStMfxuNRtXPz099++23TcvKy8tVDw8P9cMPP7zhfqZMmaKOGzeuzrKxY8eq06ZNa/GYm+La86vP7t27VUA9c+bMDcssWbJE9fDwaNngWkh95zhjxgx10qRJTdqPNV/DSZMmqSNHjmywjCVfw2u/F9rb+9AaSA1gG6usrGTfvn2MGTOmzvIxY8awY8eOerdJSEi4rvzYsWPZu3cvVVVVrRZrSyksLASgY8eONy3bq1cv/P39GTVqFJs2bWrt0JotKSmJgIAAwsPDmTZtGikpKTcsa+3Xr7Kyki+++IKZM2eiKEqDZa3l+l0tNTWV7OzsOtfIYDAwfPjwG74n4cbXtaFtLEVhYSGKouDp6dlguUuXLhEaGkpQUBATJkzgwIEDbRNgM23evBkfHx8iIyOZNWsWOTk5DZa31mt4/vx5Vq1axWOPPXbTspZ6Da/9XrDF96G5SQLYxnJzc6mpqcHX17fOcl9fX7Kzs+vdJjs7u97y1dXV5ObmtlqsLUFVVZ577jmGDBlCjx49bljO39+fjz/+mGXLlrF8+XKioqIYNWoUW7dubcNoG2fAgAF8/vnnrFu3jn/9619kZ2czaNAg8vLy6i1vzdcP4Pvvv6egoIBHH330hmWs6fpdq/Z915T3ZO12Td3GEpSXl/PSSy/x0EMP4e7ufsNy0dHRfPbZZ6xcuZKvvvoKR0dHBg8eTFJSUhtG23jjx4/nyy+/ZOPGjbz77rvs2bOHkSNHUlFRccNtrPUaLl26FDc3NyZPntxgOUu9hvV9L9ja+9AS2Jk7AFt1bU2KqqoN1q7UV76+5ZZm9uzZHD58mO3btzdYLioqiqioKNPfcXFxZGRk8Ne//pVhw4a1dphNMn78eNPrnj17EhcXR0REBEuXLuW5556rdxtrvX4AixcvZvz48QQEBNywjDVdvxtp6nuyuduYU1VVFdOmTcNoNPLBBx80WHbgwIF1OlEMHjyY3r17849//IMFCxa0dqhNNnXqVNPrHj160LdvX0JDQ1m1alWDiZK1XUOATz/9lIcffvimbfks9Ro29L1gC+9DSyE1gG3M29sbvV5/3a+TnJyc637F1PLz86u3vJ2dHV5eXq0W66166qmnWLlyJZs2bSIoKKjJ2w8cONDsv1Qbw8XFhZ49e94wVmu9fgBnzpxhw4YNPP74403e1lquX20P7qa8J2u3a+o25lRVVcWUKVNITU0lPj6+wdq/+uh0Ovr162cV1xS0WunQ0NAG47W2awiwbds2Tp482az3pCVcwxt9L9jK+9CSSALYxhwcHOjTp4+pV2Wt+Ph4Bg0aVO82cXFx15Vfv349ffv2xd7evtVibS5VVZk9ezbLly9n48aNhIeHN2s/Bw4cwN/fv4Wja3kVFRUkJibeMFZru35XW7JkCT4+Ptx9991N3tZarl94eDh+fn51rlFlZSVbtmy54XsSbnxdG9rGXGqTv6SkJDZs2NCsHx6qqnLw4EGruKYAeXl5ZGRkNBivNV3DWosXL6ZPnz7ExsY2eVtzXsObfS/YwvvQ4pij54mt+/rrr1V7e3t18eLF6vHjx9U5c+aoLi4ualpamqqqqvrSSy+p06dPN5VPSUlRnZ2d1WeffVY9fvy4unjxYtXe3l797rvvzHUKDfrd736nenh4qJs3b1azsrJMj9LSUlOZa8/xb3/7m7pixQr11KlT6tGjR9WXXnpJBdRly5aZ4xQaNHfuXHXz5s1qSkqKunPnTnXChAmqm5tbu7l+tWpqatSQkBD1xRdfvG6dtV2/4uJi9cCBA+qBAwdUQH3vvffUAwcOmHrBvv3226qHh4e6fPly9ciRI+qvfvUr1d/fXy0qKjLtY/r06XV66v/yyy+qXq9X3377bTUxMVF9++23VTs7O3Xnzp0WdX5VVVXqxIkT1aCgIPXgwYN13pMVFRU3PL/58+era9euVZOTk9UDBw6ov/71r1U7Ozt1165dbX5+qtrwORYXF6tz585Vd+zYoaampqqbNm1S4+Li1MDAwHZxDWsVFhaqzs7O6qJFi+rdhyVfw8Z8L1j7+9DaSAJoJv/85z/V0NBQ1cHBQe3du3edIVJmzJihDh8+vE75zZs3q7169VIdHBzUsLCwG34AWAKg3seSJUtMZa49x3feeUeNiIhQHR0d1Q4dOqhDhgxRV61a1fbBN8LUqVNVf39/1d7eXg0ICFAnT56sHjt2zLTe2q9frXXr1qmAevLkyevWWdv1qx2m5trHjBkzVFXVhqCYN2+e6ufnpxoMBnXYsGHqkSNH6uxj+PDhpvK1/vvf/6pRUVGqvb29Gh0dbbaEt6HzS01NveF7ctOmTaZ9XHt+c+bMUUNCQlQHBwe1U6dO6pgxY9QdO3a0/cld1tA5lpaWqmPGjFE7deqk2tvbqyEhIeqMGTPU9PT0Ovuw1mtY66OPPlKdnJzUgoKCevdhydewMd8L1v4+tDaKql5ujS6EEEIIIWyCtAEUQgghhLAxkgAKIYQQQtgYSQCFEEIIIWyMJIBCCCGEEDZGEkAhhBBCCBsjCaAQQgghhI2RBFAIIYQQwsZIAiiEEEIIYWMkARRCWIXNmzejKAoFBQVtfmxFUVAUBU9PzzY5XlpamumYt99+e5scUwhhWyQBFEJYnBEjRjBnzpw6ywYNGkRWVhYeHh5miWnJkiWcOnWqTY4VHBxMVlYWc+fObZPjCSFsj525AxBCiMZwcHDAz8/PbMf39PTEx8enTY6l1+vx8/PD1dW1TY4nhLA9UgMohLAojz76KFu2bOH999833QZNS0u77hbwZ599hqenJz/99BNRUVE4OzvzwAMPUFJSwtKlSwkLC6NDhw489dRT1NTUmPZfWVnJCy+8QGBgIC4uLgwYMIDNmzc3Oc5Dhw5xxx134Obmhru7O3369GHv3r2m9Tt27GDYsGE4OTkRHBzM008/TUlJiWl9RUUFL7zwAsHBwRgMBrp27crixYub/f9NCCGaQmoAhRAW5f333+fUqVP06NGD119/HYBOnTqRlpZ2XdnS0lIWLFjA119/TXFxMZMnT2by5Ml4enqyevVqUlJSuP/++xkyZAhTp04F4Ne//jVpaWl8/fXXBAQEsGLFCsaNG8eRI0fo2rVro+N8+OGH6dWrF4sWLUKv13Pw4EHs7e0BOHLkCGPHjuWNN95g8eLFXLhwgdmzZzN79myWLFkCwCOPPEJCQgILFiwgNjaW1NRUcnNzb/H/nhBCNI4kgEIIi+Lh4YGDgwPOzs43veVbVVXFokWLiIiIAOCBBx7g3//+N+fPn8fV1ZWYmBjuuOMONm3axNSpU0lOTuarr74iMzOTgIAAAJ5//nnWrl3LkiVLePPNNxsdZ3p6On/4wx+Ijo4GqJM8/uUvf+Ghhx4ytWPs2rUrCxYsYPjw4SxatIj09HS+/fZb4uPjGT16NACdO3du9LGFEOJWSQIohLBazs7OpuQPwNfXl7CwsDpt53x9fcnJyQFg//79qKpKZGRknf1UVFTg5eXVpGM/99xzPP744/z73/9m9OjRPPjgg6ZY9u3bx+nTp/nyyy9N5VVVxWg0kpqaypEjR9Dr9QwfPrzJ5yyEEC1BEkAhhNWqveVaS1GUepcZjUYAjEYjer2effv2odfr65RraoeL+fPn89BDD7Fq1SrWrFnDvHnz+Prrr7nvvvswGo385je/4emnn75uu5CQEE6fPt2kYwkhREuTBFAIYXEcHBzqdNxoKb169aKmpoacnByGDh16y/uLjIwkMjKSZ599ll/96lcsWbKE++67j969e3Ps2DG6dOlS73Y9e/bEaDSyZcsW0y1gIYRoS9ILWAhhccLCwti1axdpaWnk5uaaavBuVWRkJA8//DCPPPIIy5cvJzU1lT179vDOO++wevXqRu+nrKyM2bNns3nzZs6cOcMvv/zCnj176NatGwAvvvgiCQkJPPnkkxw8eJCkpCRWrlzJU089ZTq/GTNmMHPmTL7//ntSU1PZvHkz3377bYucpxBC3IwkgEIIi/P888+j1+uJiYmhU6dOpKent9i+lyxZwiOPPMLcuXOJiopi4sSJ7Nq1i+Dg4EbvQ6/Xk5eXxyOPPEJkZCRTpkxh/PjxvPbaawDcdtttbNmyhaSkJIYOHUqvXr149dVX8ff3N+1j0aJFPPDAA/z+978nOjqaWbNm1RkmRgghWpOiqqpq7iCEEMKSKYrCihUruPfee9v0uPPnz+f777/n4MGDbXpcIUT7JwmgEELchKIoODo64uXlRWZmZqsfLz09nZiYGCorK4mJiZEEUAjR4qQTiBBC3ERSUhLAdT2HW0tAQIAp6TMYDG1yTCGEbZEaQCGEEEIIGyOdQIQQQgghbIwkgEIIIYQQNkYSQCGEEEIIGyMJoBBCCCGEjZEEUAghhBDCxkgCKIQQQghhYyQBFEIIIYSwMZIACiGEEELYmP8P51XKIpruID8AAAAASUVORK5CYII=", "text/html": [ "\n", "
\n", "
\n", " Figure\n", "
\n", " \n", "
\n", " " ], "text/plain": [ "Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hrf_kernels = [equations.FirstOrderVolterra(),\n", " equations.DoubleExponential(),\n", " equations.MixtureOfGammas(),\n", " equations.Gamma()]\n", "\n", "plt.figure()\n", "for hrf in hrf_kernels: \n", " bold_monitor = monitors.Bold(hrf_kernel=hrf)\n", " bold_monitor.dt = 2**-4\n", " bold_monitor.compute_hrf()\n", " plt.plot(bold_monitor._stock_time,\n", " bold_monitor.hemodynamic_response_function.T[::-1], \n", " label=hrf.__class__.__name__);\n", "\n", "plt.ylabel('hrf');\n", "plt.xlabel('time [sec]') \n", "plt.legend()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "* [1] Friston, K., Mechelli, A., Turner, R., and Price, C., *Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics*, NeuroImage, 12, 466 - 477, 2000. \n", "\n", "* [2] Geoffrey M. Boynton, Stephen A. Engel, Gary H. Glover and David J. Heeger (1996). *Linear Systems Analysis of Functional Magnetic Resonance Imaging in Human V1*. J Neurosci 16: 4207-4221\n", "\n", "* [3] Alex Polonsky, Randolph Blake, Jochen Braun and David J. Heeger (2000). *Neuronal activity in human primary visual cortex correlates with perception during binocular rivalry*. Nature Neuroscience 3: 1153-1159\n", "\n", "* [4] Glover, G. *Deconvolution of Impulse Response in Event-Related BOLD fMRI*. NeuroImage 9, 416-429, 1999.\n", "\n", "* [5] Have a look at this tutorial: https://nbviewer.thevirtualbrain.org/github/practical-neuroimaging/pna-notebooks/blob/master/convolution.ipynb\n", "\n", "* [6] Drysdale, P. M.; Huber, J. P.; Robinson, P. A. & Aquino, K. M. *Spatiotemporal BOLD dynamics from a poroelastic hemodynamic model*. J Theor Biol, 2010, 265, 524–534\n", "\n", "* [7] http://en.wikibooks.org/wiki/SPM/Haemodynamic_Response_Function\n" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.12" } }, "nbformat": 4, "nbformat_minor": 4 }