The Virtual Brain Project

Source code for tvb.dsl.LEMS2python

# -*- coding: utf-8 -*-
#  TheVirtualBrain-Scientific Package. This package holds all simulators, and
# analysers necessary to run brain-simulations. You can use it stand alone or
# in conjunction with TheVirtualBrain-Framework Package. See content of the
# documentation-folder for more details. See also
# (c) 2012-2020, Baycrest Centre for Geriatric Care ("Baycrest") and others
# This program is free software: you can redistribute it and/or modify it under the
# terms of the GNU General Public License as published by the Free Software Foundation,
# either version 3 of the License, or (at your option) any later version.
# This program is distributed in the hope that it will be useful, but WITHOUT ANY
# WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
# PARTICULAR PURPOSE.  See the GNU General Public License for more details.
# You should have received a copy of the GNU General Public License along with this
# program.  If not, see <>.
# When using The Virtual Brain for scientific publications, please cite it as follows:
#   Paula Sanz Leon, Stuart A. Knock, M. Marmaduke Woodman, Lia Domide,
#   Jochen Mersmann, Anthony R. McIntosh, Viktor Jirsa (2013)
#       The Virtual Brain: a simulator of primate brain network dynamics.
#   Frontiers in Neuroinformatics (7:10. doi: 10.3389/fninf.2013.00010)

LEMS2python module implements a DSL code generation using a TVB-specific LEMS-based DSL.

.. moduleauthor:: Michiel. A. van der Vlag <>   
.. moduleauthor:: Marmaduke Woodman <>


import os
import tvb.simulator.models
from mako.template import Template
from tvb.basic.logger.builder import get_logger
from tvb.dsl.NeuroML.lems.model.model import Model

logger = get_logger(__name__)

[docs]def default_lems_folder(): here = os.path.dirname(os.path.abspath(__file__)) xmlpath = os.path.join(here, 'NeuroML', 'XMLmodels') return xmlpath
[docs]def lems_file(model_name, folder=None): folder = folder or default_lems_folder() return os.path.join(folder, model_name.lower() + '.xml')
[docs]def load_model(model_filename, folder=None): "Load model from filename" fp_xml = lems_file(model_filename, folder) # instantiate LEMS lib model = Model() model.import_from_file(fp_xml) # do some inventory. check if boundaries are set for any sv to print the boundaries section in template svboundaries = 0 for i, sv in enumerate(model.component_types[model_filename].dynamics.state_variables): if sv.boundaries != 'None' and sv.boundaries != '' and sv.boundaries: svboundaries = 1 continue return model, svboundaries
[docs]def default_template(): here = os.path.dirname(os.path.abspath(__file__)) tmp_filename = os.path.join(here, '') template = Template(filename=tmp_filename) return template
[docs]def render_model(model_name, template=None, folder=None): model, svboundaries = load_model(model_name, folder) template = template or default_template() model_str = template.render( dfunname=model_name, const=model.component_types[model_name].constants, dynamics=model.component_types[model_name].dynamics, svboundaries=svboundaries, exposures=model.component_types[model_name].exposures ) return model_str
[docs]def regTVB_templating(model_filename, folder=None): """ is placed results into tvb/simulator/models for new models models/__init.py__ is auto_updated if model is unfamiliar to tvb file_class_name is the name of the produced file and also the model's class name the path to XML model files folder can be added with the 2nd argument. example model files: epileptort.xml generic2doscillatort.xml kuramotot.xml montbriot.xml reducedwongwangt.xml """ # file locations modelfile = os.path.join(os.path.dirname(tvb.simulator.models.__file__), model_filename.lower() + '.py') # start templating model_str = render_model(model_filename, template=default_template(), folder=folder) # write templated model to file with open(modelfile, "w") as f: f.writelines(model_str) # write new model to such it is familiar to TVB if not already present try: doprint = True modelenumnum = 0 modulemodnum = 0 with open(os.path.join(os.path.dirname(tvb.simulator.models.__file__), ''), "r+") as f: lines = f.readlines() for num, line in enumerate(lines): if (model_filename.upper() + ' = ' + "\"" + model_filename + "\"") in line: doprint = False elif ("class ModelsEnum(Enum):") in line: modelenumnum = num elif ("_module_models = {") in line: modulemodnum = num if doprint: lines.insert(modelenumnum + 1, " " + model_filename.upper() + ' = ' + "\"" + model_filename + "\"\n") lines.insert(modulemodnum + 2, " " + "'" + model_filename.lower() + "'" + ': ' + "[ModelsEnum." + model_filename.upper() + "],\n") f.truncate(0) f.writelines(lines)"model file generated {}".format(modelfile)) except IOError as e: logger.error('ioerror: %s', e)
if __name__ == "__main__": # example run for ReducedWongWang model regTVB_templating('ReducedWongWangT', './NeuroML/XMLmodels/')